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Abstract— The effect of the choice of the control action variables 

on centralized water level controllers for open channels is analyzed. 

Three models are compared. In the first model the control action 

variable is the discharge and then the inverse gate equation is used 

to calculate the gate openings. In the second case the control action 

variable is the gate opening and that is incorporated to the canal 

model – supposing that the upstream water levels of each pool are 

known. In the third case control variables are also the gate openings 

but the upstream water level of each canal pool is unknown, they are 

calculated by the models by using the hydraulic relationships 

between the variables. These three models are discussed and 

compared through an example of centralized Linear Quadratic 

Regulator (LQR) controller using as example the Test canal 2 of the 

ASCE. 

Keywords —automatic control, irrigation, canal, integrator, 

delay, gate 

I. INTRODUCTION 

An irrigation canal with several reaches is a complex 
system where each reach can be considered as a subsystem. 
These subsystems are coupled through the discharge under the 
gates. A change in the opening of one gate affects the gate 
discharge of the gates upstream and downstream of the given 
gate and also the water levels upstream and downstream. This 
new change in the discharge can be considered as a 
perturbation that travels upstream and downstream. This effect 
is stronger in flat canals, with low friction, but it is present in 
any canal under subcritical flow. 

In order to develop a distant downstream controller (either 
water level or discharge is controlled) the choice of the control 
action variables can be the upstream discharge or the upstream 
gate opening. Both of these approaches are commonly used in 
canal control [1]. The difference between the two approaches is 
discussed below, first in the case of decentralized control and 
second in the case of centralized control. 

In case of decentralized control, several controllers are 
trying to control individual systems that are in fact heavily 
coupled. For two canal reaches connected by a gate, the gate 
opening can be the control action variable for the downstream 
reach, while it is an unknown perturbation for the upstream 

reach. Not taking this effects into account can lead to 
disturbance amplification [2] and unacceptable controller 
performance. One way to decouple these variables is using 
discharge as control action variable instead of gate opening. In 
this case the gate opening is set by a slave controller, taking 
into account the water level upstream of the gate that belongs 
to the other canal pool. The slave controller can have several 
configurations, the most simple is the inverted gate equation. A 
better approximation is to take into account the change in water 
levels by using the method of characteristics [3] or the 
integrator delay zero model [4]. In [3] different possible 
configurations with different canal geometries are compared by 
using PI controllers. The best results were achieved by using 
discharge as control action variable and a slave controller that 
takes into account the water level changes. 

For centralized systems no such tests have been carried out. 
In case of using discharge as control action variable the internal 
model has no direct information about the effect of the change 
of the water levels caused by the change of the opening. 
Moreover, the controller has no information about the change 
of discharge further propagated upstream. This information 
enters the controller when they occur in nature (after a certain 
delay) and then the controller is able to react to that. Hence, 
these type of controllers as first action can only act on the gates 
that are the neighbors of the gate where the opening occurred. 
In order to develop a controller that is aware of this dynamics 
and can act faster, the dynamics of the gates should be 
considered and implemented [1]. The gates in this case need to 
be modeled. It is possible to be carried out by identification 
experiments or by linearizing the gate equation. In both cases 
the problem is if the model is used in a regime far from the one 
where it was linearized. This problem can be overcome by 
using multiple models. 

In this work the choice of the influence of the control action 
variables on centralized controllers is investigated, whether 
discharge or gate opening is more advantageous. There are 
different models shown, two of them including the linearized 
gate dynamics in the overall state space models. The models 
are introduced in Sections II and III. In Section IV, the models 



are used to design and compare LQR controllers, discussing 
the results in Section V.  

 

II. GATE MODELING 

In order to combine the model of gates into the state space 
model of the system the classical gate equation is linearized. 
The equation is the following: 
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where Q is the discharge under the gate, Cd  is the discharge 
coefficient, L is the gate opening, b is the width of the gate, g is 
the acceleration of gravity, H1 is the water level upstream and 
H2 is the water level downstream. It can be linearized around 
the steady state Q0, L0, H10, H20, The deviations from this 
steady state are noted by q, l, h1, h2. For example, the level 
deviation is 
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Hence Eq. 1 becomes 

  
q lk

l
h

1
k

h1
h

2
k

h2

 

Fig. 1. Schematic drawing of a canal with the water levels used for gate 
modeling 

The coefficients in the linearized gate equation can be 
obtained as the partial derivatives by the given variable: 
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These gains are considered to be constant within a certain 
range around the values where the equation was linearized. 

 

III. THE MODEL OF THE CANAL 

A Linear Quadratic Regulator (LQR) controller has been 
developed. The structure of the state space model is described 
in details in [5]. Here we present only the basic hydraulic 
equations used to build the overall model. 

The canal was modeled using the Integrator Delay (ID) 
model [2] whose parameters have been calculated using the 
physical characteristics of the canal. This model provides the 
relationship between the water level and the discharge in the 
following form: 
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where hi is the water level (relative to the point of 
linearization), Adi is the discretized backwater area, d1i is the 
delay between a change in the upstream discharge and the 
downstream water level and d2i is the delay between a change 
in the downstream discharge and the upstream water level. The 
index i indicates the number of the reach. 

In this work three different models are considered as 
following below.  

A. Model 1 

The first model is the same as it was used in [5]. This 
model considers the change in discharge qi as control variable 
for every canal reach. The state space is built using the 
following equations: 
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where hint is an integral variable that was introduced in 
order to eliminate the steady state error in the control 
operations. 

In this case, the gate openings are calculated a posteriori by 
measuring the water level downstream of the gate and the gate 
equation is simply reversed. Using this state space 
representation, a change in the discharge in a canal pool causes 
a change only in the water level of the same pool and in the 
water level of the canal pool upstream to it. It does not cause 
any change in the discharges in the state, since all the 
discharges are influenced only by the control variable (that is 
the change in discharge). A simple test is carried out using a 
canal of 8 canal pools, with constant water level in the 
reservoir upstream and constant downstream discharge. The 
canal pools are connected by sluice gates. In Fig. 2, the 
discharge under Gate 5 is increased and the response of the 
water levels can be seen. The water level in the Pool 4 (directly 

 



upstream of Gate 5) decreases and the water level in Pool 5 
(directly downstream of the Gate 5) increases. The disturbance 
does not travel upstream or downstream in the canal according 
to this model, while in reality it does as it can be seen from the 
numerical solution of the Saint-Venant equations.  

 

 

Fig. 2. Response of Model 1 to increasing of the discharge at Gate 5, with 
dotted line the response of the hydrodynamic model and with straight line 

Model 1 

B. Model 2 

In case of Model 2, the linearized gate Eq. 1 for each canal 
pool are used to build the state space, and the water levels 
downstream of the gate (h2) are like “measurable 
perturbations”. In this case the model allows the perturbations 
(changes in water level) propagate downstream, hence the 
model has knowledge about this action. 

The state space is built using the following equations: 
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where qi is the discharge in the i
th

 pool, li is the gate 
opening of the i

th
 gate, khi is the gain of the i

th
 gate on the water 

level upstream of the gate (at the downstream end of the 
previous canal pool) and khui is the gate of the water level 
downstream of the gate (the upstream end of the canal pool). 

In this model, the control action variable is the change in 
the gate opening. The water levels (h2) at the upstream part of 
the gates are considered as measured variables. Therefore they 
are part of the state, and are updated every time from measured 
data. 

The same experiment was carried out that in case of Model 
1, but instead of increasing the discharge at Gate 5, the gate 
opening was increased. Fig. 3 shows the results in water level. 
During this experiment the water level downstream of the gate 
was not measured, therefore it is considered to be constant for 
the model. It can be seen that the existence of the perturbations 
downstream that happen in reality are predicted by the model, 
however, the magnitude and the final state is different from the 
real values due to the fact that the water levels upstream are not 
taken into account in this model, which at this experiment are 
considered constant. It can also be noted that, while in reality 
(the results of the numerical solution of the Saint-Venant 
equations) the perturbations also travel upstream, this is not 
predicted by Model 2. 

 

 

Fig. 3. Response of Model 2 to increasing the opening of Gate 5, with dotted 
line the response of the hydrodynamic model and with straight line Model 2 

C. Model 3 

In case of the third model, the linearized gate equation is 
still used as in Model 2. However, in this case, the water levels 
(h2) at the upstream part of the gates are not measured 
variables. Instead, they are related to discharges by using 
models as the one in Eq. 8.  

The state space of Model 3 uses the following set of 
equations: 
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The result of this combined model is that the effects of 
water level changes can propagate downstream and upstream 
as well. 

This can be seen in Fig. 4. The same experiment is carried 
out as in case of Model 2: the opening of Gate 5 was increased. 
The advantage of this model is twofold: (1) it is able to 
reproduce the disturbances travelling in both directions, and (2) 
it does not need measured data about the water levels at the 
upstream end of the canal pools. 

 

 

Fig. 4. Response of Model 3 to increasing the opening of Gate 5, with dotted 
line the response of the hydrodynamic model and with straight line Model 2 

 

IV. CONTROLLER DEVELOPMENT AND TEST 

A. LQR controller 

All the three models were transformed into state space 
form:  
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where x is the state vector, u is the input control vector, D is 
the disturbance vector, and A, B, and Bd, are matrices of 
appropriate dimensions. In brackets, k is the present time and 
k+1 is the future time step. 

In all the three cases a discretization time of 500 s was 
used. The delay steps are calculated for each reach as the 
maximum of the upstream and downstream delay steps in order 
to be able to represent the downstream and upstream 
disturbance propagation. 

In order to keep the process as close as possible to a 
predefined reference, the optimal control process was carried 
out using the following objective function:  
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where e is a vector containing the water level errors for the 
three pools for the whole prediction horizon, Qe is the weighing 
matrix for the error, eint is a vector containing the integral of the 
errors for the whole prediction horizon, Qint is the weighing 
matrix for the integral of the errors, u is a vector containing the 
inputs (change in discharge or change in gate opening) and R is 
the weighing matrix for the input.  

B. Tuning 

In case of this LQR controller there are three parameters to 
tune: the penalty on the water level error, the penalty on the 
integral (sum) of the water level error and the penalty on the 
control action variable (discharge in the first case and gate 
opening in the second case). In order to make a fair comparison 
between the three controllers, similar conditions should be 
used. Therefore the penalties on the error and integral error 
were chosen to be the same. The penalty on the control action 
variable should be different depending on its type: discharge or 
gate opening. Therefore the following process was established: 
an objective function was created based on the weighted sum 
of the performance indices, and the penalty on the control 
action variable was changed in order to minimize this objective 
function. As it was expected, in the two cases where the control 
action variable is the gate opening the same penalty minimized 
the function. The penalties were reciprocals of the square of the 
absolute affordable error (10 cm and 50 cm for the integral 
variable) and change in the control action variable (0.15 m

3
/s in 

case of discharge and 0.05 m in case of gate opening).  

C. The test canal 

The controllers are tested on the Corning canal, the second 
test canal of the ASCE [6]. In order to compare these 
controllers, the first half of the Test-2-1 was carried out in 
tuned conditions. The test lasts 24 hours and the objective is to 
keep the water levels constant while disturbances occur. At the 
downstream end of each pool there is a gravity offtake. At 2h, 
the gates at offtakes 5 and 6 are opened to increase the offtake 
discharge from 1 m

3
/s to 1.5 m

3
/s and 2 m

3
/s respectively.  

The performance of the controllers is analyzed by using the 
performance indices suggested by the ASCE [6], which are 
three indicators computed for each controlled variable 
(downstream water level): the maximum absolute error (MAE), 
the integral of the absolute magnitude of the error (IAE), the 
steady state error (StE), the integrated absolute discharge 
change (IAQ) and the integrated absolute gate movement 
(IAW). 

 

 

 



Table 1. The results of Model 1 

 MAE 

(%) 

IAE 

(%) 

StE 

(%) 

IAQ 

(m
3
/s) 

IAW 

(m) 

Max 9.66 3.15 2.10 6.30 0.95 

Avg 4.58 1.47 0.95 2.94 0.50 

 

Table 2. Results of Model 2 

 
 MAE 

(%) 

IAE 

(%) 

StE 

(%) 

IAQ 

(m
3
/s) 

IAW 

(m) 

Max 7.52 2.15 0.37 8.19 0.51 

Avg 3.71 0.97 0.18 2.41 0.28 

 

Table 3. Results of Model 3 

 
 MAE 

(%) 

IAE 

(%) 

StE 

(%) 

IAQ 

(m
3
/s) 

IAW 

(m) 

Max 7.51 2.15 0.37 8.23 0.52 

Avg 3.71 0.98 0.18 2.43 0.28 

 

 

 

Fig. 5 LQR-Model 1, Water levels 

 

 

Fig. 6 LQR -Model 1, Gate openings 

Fig. 7. LQR -Model 2, Water levels 

 

 

Fig. 8. LQR -Model 2, Gate openings 

 

 

 



 

Fig. 9. LQR -Model 3, Water levels 

 

Fig. 10. LQR -Model 3, Gate openings 

V. RESULTS AND DISCUSSION 

The three models were tested as internal models for LQR 
centralized controllers using the ASCE Test Canal 2. The 
results of Model 1 are shown in Fig. 5 and Fig. 6 and the 
performance indices are shown in Table 1. It can be seen that 
even with this simple modeling approach a fairly good 
controller is possible to be developed.  

The results with Model 2 are shown in Fig. 8 and Fig. 9, 
while the performance indices are shown in Table 2. The 
controller gave a good response. Within 4 hours the water level 
reaches the setpoint, without offset. The same can be said about 
the results with Model 3 (Figs. 9-10 and Table 3). These two 
models showed very similar performance. However, in this 
case it is important to emphasize that Model 3 had no 
measurement data about the water levels just downstream the 
gates (h2). Hence this is the only model that does not require 
these water level measurements. In consequence, the 
implementation of the control system can be more economic. 
This is a significant advantage of Model 3. 

 

VI. CONCLUSION 

Different distant downstream water level control 
configurations were compared: (1) the discharge as control 
action variable along with the use of the inverse of the gate 
equation, and (2) the gate opening as direct control action 
variable. In the second case there were two possibilities: either 
measure or model the water level directly downstream of the 
gates. Simulation results showed better performance in case of 
the last two models. Model 2 and Model 3 had almost the same 
performance, considerably better than that of Model 1. These 
differences are expected to be even greater in case of using 
model predictive control, where the gate dynamics is 
considered at every step during the whole prediction horizon. 

These results showed that it may be beneficial to use gate 
opening as control variable and, moreover, it might also be 
possible to avoid the measurements of the downstream water 
levels of the gates. 
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