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Experimental comparison of canal models for control

purposes using simulation and laboratory experiments

Klaudia Horváth, Eduard Galvis, José Rodellar and

Manuel Gómez Valentín
ABSTRACT
Considerable amounts of water can be saved by automating irrigation canals. The design of most of

the practical automatic controllers rely on a simplified model of the irrigation canal. This model can

be obtained from measured data (identification) or can be formulated (white box models) assuming

simplifications in the physical concepts and using the canal geometry. Several models of this kind are

presently available. Moreover, short canals reveal a resonance problem, due to the back and forth of

waves. This paper is focused on how to choose a suitable model for short canal pools with the

purpose of control design. Four simple models are applied to two different types (resonant and

non-resonant) of short canals: First order transfer function based on the Hayami model, Muskingum

model, Integrator Delay (ID), and Integrator Delay plus Zero (IDZ). Model predictive controllers are

developed based on these models and they are tested numerically and experimentally in order to

evaluate their contribution to the control effectiveness. The controllers based on the ID and IDZ

model showed the best performance.
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NOMENCLATURE
Latin letters
A (m2)
 cross-sectional area
Ae (m
2)
 storage surface
AeID (m2)
 the backwater area for the ID model
AeIDZ (m2)
 backwater area for the IDZ model
Bg (m)
 width of the gate
B (m)
 bottom width
C0 (m/s)
 celerity coefficient
Cdg (� )
 gate discharge coefficient
Cdw (� )
 weir discharge coefficient
CL (� )
 constant in the Hayami model moment

matching
D0 (m2/s)
 diffusivity coefficient
e (m)
 water level error
GFO
 transfer function of the first order model

between water levels
GFOq
 transfer function of the first order model

between discharges
GM
 transfer function of the Muskingum model

between water levels
GMq
 transfer function of the Muskingum model

between discharges
H (m)
 downstream water level
H2 (m)
 water level downstream the gate
hsp (m)
 water level setpoint
K (s)
 storage time constant
K1 (s)
 time constant of the first order model
khg
 gain of the gate discharge
khw
 gain of the weir discharge
KIDZ1
 a parameter of the IDZ model
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KIDZ2
 a parameter related to the IDZ model
L (m)
 length of the canal pool
Lg (m)
 gate opening
Lw (m)
 width of the weir
m (-)
 side slope of a channel
n (m�1/3/s)
 Manning’s coefficient
O (m)
 the height of the weir
P
 weighting matrix for the water level error
qin (m3/s)
 relative input discharge
Qin (m3/s)
 input discharge
Qin0
 steady state input discharge
Qoff (m
3/s)
 offtake discharge
Qout (m
3/s)
 output discharge
Qt (m
3/s)
 transport discharge
R
 weighting matrix for the change in input

discharge
Rh (m)
 hydraulic radius
Sb (m/m)
 bottom slope
Sf (-)
 friction slope
Tw (m)
 width of the free surface
u
 input control vector
V (m3)
 storage volume
vsto
 relative storage volume
W
 disturbance vector
x
 the state vector
Greek letters
η (� )
 dimensionless characteristic of the length of the

canal pool
λ (� )
 prediction horizon
σ (� )
 dimensionless characteristic of the wave propa-

gation in a canal pool
τID (s)
 the time delay for the ID model
τIDZ (s)
 the time delay for the IDZ model
χ (� )
 Muskingum model coefficient
Acronyms
ID
 Integrator Delay
IAE
 Integral of absolute magnitude of error
IDZ
 Integrator Delay Zero
MAE
 Maximum absolute error
MUS
 Muskingum
FO
 first order
ASCE
 American Society of Civil Engineers
SCADA
 Supervisory Control and Data Acquisition

System
SIC
 simulation of irrigation canals
StE
 steady state error
TSS
 time to reach steady state indicator
UPC-

PAC
(Canal de Prueba de Algoritmos de Control –

Universitat Politècnica de Catalunya) Technical

University of Catalonia – Control Algorithms

Test Canal
INTRODUCTION

Irrigation is one of the largest water users, and given the

increasing water stress, there is demand for more efficient

management. Automatic control of irrigation canals is one

of the ways to achieve this efficiency, aiming to reduce

water losses while increasing economical and ecological

benefits. The goal of automatic canal operation is to deliver

the right amount of irrigation water in the right time, allow-

ing on-demand operation of irrigation canals. The control of

the canals is implemented by means of programmable auto-

matic controllers that are able to control from a single canal

pool to a whole network of irrigation canals.

One of the control techniques applied for irrigation

canals (Rodellar et al. ; van Overloop ; van Over-

loop et al. a) is model predictive control (MPC). This

control technique is based on a suitable system model that

must be accurate enough to capture significant dynamic

behavior and simple enough for allowing online optimiz-

ation. In the case of MPC, optimization is carried out

online at every time step. By using linear models, this

means solving a quadratic programming problem. However,

in the case of nonlinear model predictive control (NMPC) a

nonlinear problem has to be solved, which is computation-

ally expensive (Schwanenberg et al. a). There are

existing studies about NMPC of water systems (Igreja &

Lemos ; Schwanenberg et al. b), but the majority
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of MPC for water systems are still using linearized models or

multiple model approaches (van Overloop et al. ). Since

this work focuses on the use of linear MPC, only linear

models are considered in the following.

Several surveys are available about irrigation canal

models for control purposes. Malaterre & Baume ()

categorized canal models of finite and infinite order, linear

and nonlinear models. Zhuan & Xia () categorized

the models based on the way they are obtained: black and

white box models. Malaterre () summarized the existing

models including both categories, presenting also a discus-

sion about them. Mareels et al. () raised the question

of the possible level of discretization and simplification

that can be used for models for controller design. However,

comparative evaluations between these models are missing.

In the following, some existing hydraulic models are briefly

introduced.

These simple models can be categorized into three

different groups based on the way they are obtained. Black

box refers to models obtained by using system identification

without using physical knowledge of the system. Gray box

models (Refsgaard ) have a structure based on physical

knowledge and their parameters are identified from

measured data. In a third group, white box models do not

need any measured data, and they are proposed from the

canal geometry using conservation laws (storage equations,

for instance). The advantage of black box models is their

simplicity: only experimental data are taken and a model

can be fitted without assuming knowledge of the system

dynamics. The disadvantage of this method is that the

model structure might not take into account the real

dynamics. It might be different from the real process,

especially in operation points further from the point where

the data set for the identification was collected. Moreover,

in some cases it may not be possible to collect data or the

collection of the data may be very expensive. This method-

ology is often used in control problems. It has been

applied to laboratory canals: for instance, in Sepúlveda

(), ARX (AutoRegresive with eXternal input) models

were identified with orders between 5 and 10; and second

and third order models were identified in Begovich et al.

(). Linear first order (FO) models with varying par-

ameters were applied for the Lunax dam-gallery at

Gascogne by Puig et al. (). In van Overloop & Bombois
(), the authors identified a ninth order model from exper-

imental data using an existing canal at the Central Arizona

Irrigation and Drainage District.

In the case of gray box models, the model dynamics is a

priori given, but the parameters are identified using exper-

iments and operational data. The following are examples

of models of different structures: third order in Weyer

(); FO with delay in Aguilar et al. (, ); and Inte-

grator Delay plus Zero (IDZ) model in Aguilar et al. ().

In Duviella et al. (), a multivariable state space model

containing delays is identified. It is possible to obtain the

parameters by open (Eurén & Weyer ) or closed loop

identification (Ooi & Weyer ).

The white box models are based on the mathematical

description (conservation laws) of the system. There are

models with different complexities, but all of them can be

derived from the Saint–Venant (SV) equations. The advan-

tages of this approach are that the model contains the real

dynamics of the system, it might have a wider range of val-

idity, and it does not require measurements. However,

these models may not be simple to establish, and the

dynamics of the complete system may not be known in all

the cases. Or, even sometimes, the whole system is so com-

plicated that there is a need for simplification of the original

model.

One possible way to obtain linear models for control

purposes is to linearize the SV equations. However, the lin-

earized SV equations are still partial derivative equations,

which need special treatment for controller design (Mala-

terre & Rodellar ). When the SV equations are

discretized, e.g., with the Preismann scheme, a spatial dis-

cretization is needed. This, depending on the scale of the

space discretization, can increase considerably the size of

the system. There are some models obtained from the linear-

ization of the SV equations in the uniform regime. However,

in the case of irrigation canals the flow is often affected by

backwater due to the presence of hydraulic structures, there-

fore the use of simple models that are able to represent this

condition is beneficial (Litrico & Fromion c).

A simplified SV model is presented by Xu et al. (),

comparing it to the whole SV model and analyzing the

differences and computation times. Simplified versions of

these equations have been proposed, for example the diffu-

sive wave equations, which with the help of the moment



Table 1 | Geometrical data of the Corning and the laboratory canal where n is Manning’s

roughness coefficient, B is the bottom width of the canal, Sb is the bottom

slope, L is the length, m is the side slope, Q0 is the reference discharge and

H0 is the reference (downstream) water depth

n
(m�1/3/s)

B
(m) Sb (-) L (m)

m
(-) Q0 (m3/s)

H0

(m)

UPC-PAC 0.016 0.44 0 220 0 0.07 0.65

Corning 0.02 7 0.0001 7000 1.5 11 2.1
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matching method can be approximated as second order

model with delay (Malaterre ; Litrico & Georges

). Simplified hydraulic models like the Muskingum

model have been used by some authors (Rodellar et al.

; Gómez et al. ; Alvarez Brotons ). Another

simplified hydraulic model, the Hayami model, is also

used for control purposes by Chentouf () and Charbon-

naud et al. ().

The most common simplified model used in practice is

the Integrator Delay (ID) model: (van Overloop et al.

, a; Wahlin & Clemmens ; Zafra-Cabeza et al.

). The IDZ model is the extension of the ID model.

Another model in the literature developed for control pur-

poses, but not used at the time this work was carried out,

is the Integrator Resonance model (van Overloop et al.

).

The choice between black or white box models often

depends on the available data and knowledge about the

canal. However, once white box models have been decided

upon, there is no study about how to choose a particular

model within this group. The initial choice might depend

on the type of control one would like to apply and also

the canal type. In this study, we search for the answer to

this question for a specific canal type: short canals. The

aim of this work is to find out which white box model

would be the best choice as internal model for MPC for

short canals.

The working methodology is as follows: some simple

models from the literature are reviewed and implemented

for two different canals. They are compared in both time

and frequency domain as a preliminary test. Predictive

controllers are developed based on them and tested

numerically. The best performing controllers are

implemented experimentally in the laboratory canal of

the Technical University of Catalonia. The influence of

the model choice on the controller performance is

assessed. The two cases studied in this paper are represen-

tative of two classes of typical canals characterized in the

irrigation canal control area.

The paper is organized as follows. First, the examples

for the two canal types are described: the laboratory canal

of the UPC, which is as an experimental facility, and the

Corning canal, which is used in numerical simulations.

Second, the different canal models are described and
analyzed in the time and frequency domain. Third, the

MPC development is described. Fourth, the numerical

and experimental results of the controllers are analyzed

and, finally, conclusions are drawn.
THE LABORATORY CANAL OF THE TECHNICAL
UNIVERSITY OF CATALONIA

The UPC-PAC canal (Canal de Prueba de Algoritmos de

Control – Universitat Politécnica de Catalunya) is specially

designed to develop basic and applied research in the field

of control of irrigation canals. The canal is designed with

a serpentine shape in order to achieve the greatest length

using a small surface area. The shape might have some

effects on the flow characteristics, but these are especially

local effects, like the turbulences occurring at the curves

that might increase the energy losses. The laboratory canal

with its time delay can be used to test canal control algor-

ithms (Sepúlveda ). It has zero bottom slope in order

to achieve the largest possible time delay. The geometrical

data are summarized in Table 1. At the upstream end,

there is a constant depth reservoir that is connected with a

sluice gate to the canal.

The canal contains four operative motorized sluice

gates, therefore it is possible to divide it into four pools.

At the downstream end, there is a sharp crested weir

with variable height. Gravity offtakes (lateral weirs with

minimum height of 34.3 cm) are found at the downstream

end of every pool. The maximum discharge that can circu-

late is 150 L/s. The UPC-PAC is short, completely affected

by backwater. Due to the low friction and the zero slope,

one wave can travel back and forth several times before

it finally dampens. This phenomenon is known as
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resonance. A detailed description of its main features can

be found in van Overloop et al. (b).

According to the Cemagref benchmark characterization

(Baume et al. ), the UPC-PAC lies within the so-called

Type 1: short canals having FO response with resonance.

The Cemagref benchmark characterization is based on the

use of two dimensionless variables, σ and η. Variable σ is a

dimensionless length characteristic of the pool, which is

also influenced by the normal depth, hence the normal

flow. Variable η depends on σ and the Froude number. It

is shown (Baume & Sau ) that σ characterizes the

wave propagation and η characterizes the downstream

level perturbations. The value of η shows if a wave is

damped or not, and the value of σ shows the order of the

wave model. These parameters are associated with the

flow regime, and with a very different operational discharge

the canal might fall into another category.
THE CORNING CANAL

The Corning canal is one of the test canals proposed by the

American Society of Civil Engineers (ASCE) to test control

algorithms (Clemmens et al. ). In this work, the first

pool of this canal is used, which is bounded by a constant

depth reservoir upstream and by a sluice gate downstream.

This canal pool is relatively short, belonging to Type 3 in

the Cemagref benchmarks. It is a short canal with FO behav-

ior, that is a FO transfer function is used to relate the

upstream and the downstream discharges. It shows no res-

onance phenomena. The geometrical data of this canal are

shown in Table 1.
Figure 1 | Distribution of a canal pool into two zones and the trapezoidal cross section.
THE CANAL MODELS

In this section, first we give a general introduction to an

example canal pool, then each model is described, finally

the calculated parameters for each model for both canals

are given.

In this work, a single canal pool is considered as case

study, as illustrated in Figure 1. The canal is represented

with two zones: transport and storage. The dynamics of

the two parts are considerably different, and this distinction

was first proposed by Schuurmans (). The main vari-

ables are Qin (m3/s) input discharge, Qt (m3/s) transport

discharge (the discharge at the end of the transport zone),

Qout (m3/s) output discharge, H (m) downstream water

depth, Qoff (m
3/s) offtake discharge. The models are linear-

ized around a steady state. In all cases, the absolute

quantities are noted with capital letters, the steady state

values have a zero index, and the values relative to the

steady state are noted with small letters. For example, the

relative input discharge is

qin tð Þ ¼ Qin tð Þ �Qin0: (1)

The control objective is to keep the downstream water

depth as close as possible to its prescribed setpoint by

manipulating the input discharge through the upstream gate.
Muskingum model

The Muskingum model (abbreviated MUS in the following)

is a frequently used linear model for flood routing (Cunge

). It has been also used for control purposes (Rodellar
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et al. ; Gómez et al. ; Mantecón et al. ). Simpli-

city and linearity are its main advantages.

The model consists of two equations, describing water

storage and continuity, respectively

vsto tð Þ ¼ K χqin tð Þ þ (1� χ)qt tð Þ½ � (2)

dvsto
dt

¼ qin tð Þ � qt tð Þ (3)

where vsto is the relative storage volume, K is the storage

time constant, and χ is a dimensionless coefficient. The sto-

rage time constant (with the dimension of time) can be well

approximated by the time it takes for one wave to travel

through the pool. Parameter χ is dimensionless and weighs

the relative effects of inflow and outflow on the pool storage

(boundary conditions), which varies in the range [0, 0.5]. It

can be approximated from the flow and geometrical proper-

ties of the canal (Cunge ). Applying the Laplace

transform to the model above, the following transfer func-

tion can be derived:

GMq(s) ¼ qt sð Þ
qin sð Þ ¼

1� Kχs
1þ K(1� χ)s

: (4)

In this paper, for simplicity reasons, the same notation is

used to express a time function or its corresponding Laplace

transform, for example qt(t) or qt(s). Details about the deri-

vation of this transfer function can be found in Rodellar

et al. (). This transfer function shows the relationship

between the upstream discharge and the discharge at the

end of the transport zone. In this work, the objective is to

control the downstream water depth, hence there is a need

for a transfer function between the upstream discharge

and the downstream water depth. The storage zone can be

modeled, if no offtake is present, as a tank in the form

Ae
dh
dt

¼ qt tð Þ � qout tð Þ (5)

where Ae is the storage surface. It can be approximated as

Ae ¼ TwL, (6)
where L is the length of the canal pool. Applying the

Laplace transform, the following expression is obtained:

qt sð Þ ¼ sAeh sð Þ þ qout sð Þ: (7)

By combining Equations (4) and (7), the transfer func-

tion between the upstream discharge and downstream

water depth is the following:

GM sð Þ ¼ h sð Þ
qin sð Þ ¼

1�Kχs
AesþK(1� χ)Aes2

: (8)

Hence, the downstream water depth can be expressed as

h sð Þ ¼ GM sð Þqin sð Þ � 1
Aes

qout sð Þ: (9)

FO model based on the Hayami equation

The Hayami model (Hayami ) is the linearization of the

diffusive wave equation with the hypothesis that the celerity

and diffusivity are constant

@q
@t

þ C0
@q
@x

�D0
@2q
@x2

¼ 0 (10)

where q is the relative discharge (deviation from the steady

state discharge Q0), C0 is the celerity coefficient, and D0 is

the diffusivity coefficient. For trapezoidal channels (see

Figure 1) these coefficients are:

C0 ¼ 5Q0

3A0
� 2Q0m

T2
w0

(11)

D0 ¼ Q0

2Tw0Sf0
(12)

where Sf0 is the friction slope which can be calculated from

Manning’s equation

Sf0 ¼ Q2
0n

2

A2
0R

4=3
h0

(13)
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where Rh0 is the hydraulic radius. Manning’s coefficient is

obtained from the literature (Chow ). The use of the

Hayami model has been studied for different control

methods, such as feedforward control (Sawadogo )

and predictive control (Charbonnaud et al. ).

One of the ways to obtain a simple linear model from

the Hayami equation is the momentum matching method

(Malaterre ; Litrico & Georges ). (Detailed descrip-

tion of the method to obtain the transfer function can be

found in these references, but here just a brief summary is

given.) The concept is to make equal the low order moments

of the Taylor expansion of the Laplace transforms of the cal-

culated transfer function of the Hayami model and the first

or second order function with delay. The low order

moments correspond to low frequencies (s close to 0),

which is the most common in natural systems. Depending

on the canal properties, three different categories can be

established. The following dimensionless coefficient is

derived to characterize the canal pool:

CL ¼ C0L
2D0

: (14)

Category 1: If CL> 9/4 , the pool is relatively long, a

second order function with delay can be defined.

Category 2: If 1<CL� 9/4 the pool is relatively small.

The second order transfer function with delay is unstable,

therefore it is possible to define a FO or a second order

transfer function. In this case it is possible to equate the

first three moments.

Category 3:When CL� 1 the pool is very short. FO trans-

fer function can be defined by equating the first twomoments.

An analysis about canals falling into each category with

different length and discharge can be found inAlvarezBrotons

(). Both canals studied in this paper fall into Category 3,

therefore a FO transfer function without delay can be defined:

GFOq sð Þ ¼ qt sð Þ
qin sð Þ ¼

1
1þ K1s

(15)

where

K1 ¼ L
C0

: (16)
In the remainder of this paper, this model will be referred

to as FO model.

Just as in the case of the Muskingum model, by combin-

ing Equations (7) and (15) the relationship between

upstream discharge and downstream water depth can be

given in the form

GFO sð Þ ¼ h sð Þ
qin sð Þ ¼

1
AesþAeK1s2

(17)

and the downstream water depth can be expressed as

h sð Þ ¼ GFO sð Þqin sð Þ � 1
Aes

qout sð Þ: (18)

The Integrator Delay model

The ID model was developed by Schuurmans () and it is

widely used for water systems (Wahlin & Clemmens ;

van Overloop et al. a). The model is also based on the

division of the canal pool into an upstream and a down-

stream part. The upstream part is characterized by uniform

flow, while the downstream part is characterized by back-

water. Some canals are completely affected by backwater,

like the laboratory canal used in this study. In the backwater

part, the dynamics is complicated: waves are travelling up

and down and being reflected. However, in low frequencies

the water depth behaves as an integrator of the discharge.

Therefore the water depth can be approximated as the inte-

gral of the flow. The model is then defined in the form

(Schuurmans )

h sð Þ ¼ 1
AeIDs

e�τidsqin sð Þ � 1
AeIDs

qout sð Þ (19)

where τid is the time delay, qin is the upstream discharge, qout
is the downstream discharge, and 1/AeID is the gain of the

integrator (backwater area). The first term of Equation (19)

accounts for the effect of the upstream discharge to the

downstream water level, the second term accounts for the

effect of the downstream discharge (with negative sign

because this is the discharge leaving the canal). The back-

water area can be approximated using the surface of the
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canal pool

AeID ¼ TwL: (20)

If the water surface is close to horizontal this approxi-

mation is close to the real backwater surface.
Integrator Delay Zero model

Similar to the ID model, the IDZ model (Litrico & Fromion

a) is an extension of the ID model that includes a zero

in the transfer function. It is able to represent the canal behav-

ior in low and high frequencies; the integrator delay accounts

for low frequencies, whereas the zero represents the direct

influence of the discharge on thewater depth in high frequen-

cies. The IDZmodel was derived from the linearization of the

SV equations. The upstream (uniform) part and the down-

stream (backwater) part are modeled separately, then the

two models are interconnected. The final form of the model

is the result of the connections of these two models. The

downstream water depth can be expressed in the form

(Litrico & Fromion a):

h sð Þ ¼ KIDZ1sþ 1
AeIDZs

e�τIDZsqin sð Þ �KIDZ2sþ 1
AeIDZs

qout sð Þ (21)

whereKIDZ1 and KIDZ2 are parameters related to the zero cal-

culated from the canal properties, τIDZ is the time delay, and

AeIDZ is the integrator/backwater area approximation. The

structure of thismodel is similar to Equation (19) but extended

with a zero. More details are given about the IDZ model in

Appendix A (available online at http://www.iwaponline.

com/jh/016/110.pdf). The detailed derivationof these transfer

functions can be found in Litrico & Fromion (a, c).

The parameters of the four models for both canals are

given in Table 2.
Table 2 | The parameters of the four different models for the Corning and the laboratory can

Muskingum Hayami

K (s) X (-) K1 (-) D0 (m2/s) C0 (m/s) CL (-)

UPC-PAC 79.4 0.01 539 – 0.41 0.00

Corning 1385 0.10 10,393 4135 0.67 0.57
COMPARISON OF THE MODELS IN THE TIME AND
FREQUENCY DOMAINS

In order to understand the behavior of different models they

are compared in time and frequency domains. The time

domain analysis is often used for models developed for

simulation purposes. The step response of these models is

compared to real data or response of already existing

models (Litrico & Fromion c). The frequency domain

analysis is used in the control field (Ogata ). By studying

the bode diagram, the response of the model for different fre-

quency excitations can be read, in other words, the response

for different frequencies of the wave movement in the case

of open channels. The knowledge of the frequency behavior

is crucial when controllers are designed (Schuurmans ;

van Overloop ).

In the time domain, the response of the downstream dis-

charge to a step input in the upstream discharge is analyzed.

In the frequency domain, the relation between the down-

stream depth and the upstream discharge is studied. The

use of the downstream depth in modeling is particularly rel-

evant for the automatic control problem.
Comparison of the transport part

The step response is calculated for the four models and com-

pared to the numerical solution of the SV equations. The

downstream boundary condition was the hydraulic struc-

ture: a weir for the UPC-PAC and gate for the Corning canal.

Figures 2 and 3 show the response for the Corning canal

and the laboratory canal, respectively. The difference

between the two canals can be seen in the step response

of the SV equations: while the response of the Corning

canal (Figure 2) looks like a FO, the response of the labora-

tory canal (Figure 3) looks like a FO response with a zero

(the fast increase in the beginning of the response).
al (UPC-PAC)

ID IDZ

AeID (m2) τID (s) τIDZ (s) AeIDZ (m2) KIDZ1 (�) KIDZ2 (�)

96.8 79.4 78.6 90.6 82.4 85.5

93,100 1385 1489 61,212 371 1472

http://www.iwaponline.com/jh/016/110.pdf
http://www.iwaponline.com/jh/016/110.pdf


Figure 3 | Step response of the simple models of the UPC-PAC compared to the

numerical solution of the SV equations: SV model (solid black line), ID model

(solid gray line), IDZ model (dotted gray line), Muskingum model (dashed gray

line), and the FO model (dash-dot line).

Figure 2 | Step response of the simple models of the Corning canal compared to the

numerical solution of the SV equations: SV model (solid black line), ID model

(solid gray line), IDZ model (dotted gray line), Muskingum model (dashed gray

line), and the FO model (dash-dot line).

Figure 4 | Bode plot of the simple models of the Corning canal compared to the

numerical solution of the SV equations: SV model (solid black line), ID model

(solid gray line), IDZ model (dotted gray line), Muskingum model (dashed gray

line), and the FO model (dash-dot line).
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The ID model is a simple step with a time delay. There-

fore its response is a pure step that starts at a time instant

equal to the time delay of the SV model and the step size

is equal to the peak response of the SV model. The ID

and the IDZ models capture the time delay, which is cor-

rectly approximated as compared to the SV model. The

difference between ID and IDZ is that IDZ has a shape

more similar to the SV response: it captures this fast

increase but deviates from SV in the whole transient

period. This suggests the idea that IDZ should perform

better than ID.
The response of the Muskingum and FO models contain

no time delay. These models might compensate the delay

with their slower behavior, but this might cause problems

when controllers are developed. The response of the FO

model is far from the response of the SV equations. The

response of the Muskingum model is somewhat better. It

is important to note that this model starts in the negative

direction before increasing (Figure 2). This is due to the

unstable zero in the transfer function in Equation (4). How-

ever, for controller design, it is better to approximate the

frequency response of the system than its time response

(Zhou & Doyle ).
Comparison in the frequency domain

The frequency response shows the response of the system

when the input is a sinusoidal wave. The phase plot shows

the change in the phase of the input wave, while the gain

plot shows the change in the amplitude of the wave. The fre-

quency responses of the Corning (Figure 4) and the

laboratory canal (Figure 5) were obtained using the approxi-

mation method of Litrico & Fromion (b) to solve

numerically the linearized SV equations. In this case, con-

stant discharge as a downstream boundary condition was

assumed.



Figure 5 | Bode plot of the simple models of the UPC-PAC compared to the numerical

solution of the SV equations: SV model (solid black line), ID model (solid gray

line), IDZ model (dotted gray line), Muskingum model (dashed gray line), and

the FO model (dash-dot line).
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All the models in this comparison have two parts: trans-

port and integrator. The FO and the Muskingum model only

describe the transport part; they give a formula for the

relationship between the upstream and the downstream dis-

charges. In the case of the ID model, it can be assumed that

a canal pool is divided into two sections: a transport zone

and a backwater zone. The transport zone can be modeled

using FO or Muskingum model and the backwater zone

can be modeled as an integrator.

The gain response for the SV model shows a straight line

in the low frequencies, when the system acts as an integra-

tor: the water depth is the integral of the discharge. The

line becomes horizontal at higher frequencies, which

shows the presence of a zero in the transfer function. In

the case of the laboratory canal, some peaks can be seen

for high frequencies. These are resonance peaks: the water

depth is changing as a wave is travelling back and forth with-

out attenuation. This phenomenon is common in short and

flat canals with low friction, since it takes longer for the

energy of the wave to dissipate. This phenomenon is not

seen in the case of the Corning canal.

In both canals, the phase plot starts at �90 degrees due

to the integrator, and then it decreases due to the time delay.

All models are good in low frequencies: in the gain plot,

they have the straight line with the same slope and in the
phase plot they start at �90 degrees. As was seen in the step

responses, only the ID and the IDZ approximates the time

delay well. All models except the IDZ underestimate the

high frequency gain. In both cases the FO model gives the

lowest estimate. The IDZ model approximates the high fre-

quency gain better than the other models, specially in the

case of the Corning canal. However, in the case of the labora-

tory canal, it is crossing the resonance peaks: at some

frequencies it estimates the gain lower and at some other fre-

quencies it estimates the gain higher than the real value.

Evaluation of the time and frequency domain

comparison

While some models show good performance in the time

domain, some others show good performance in the fre-

quency domain. Some of them are able to approximate one

property as, for instance, the time delay in the case of ID

and IDZ models, the shape of the time response (FO

model), or the high frequency behavior (IDZ model). From

these properties, it is not straightforward to conclude which

model will serve better as internal model for predictive con-

trol design. In the following, controllers based on all four

models are implemented and their performance is analyzed

to demonstrate a broader perspective for such a conclusion.
PREDICTIVE CONTROLLER DEVELOPMENT

The state space models

In order to develop predictive controllers, a discrete time

state space model is obtained from the continuous models

using discretization time steps of 500 s and 10 s for the Corn-

ing canal and the UPC-PAC, respectively. A state space

model is developed for each hydraulic model with the

same following form

x kþ 1ð Þ ¼ Ax kð Þ þ Bu(k)þ BdW(k) (22)

where x(k) is the state vector, u(k) is the input control

vector, W(k) is the disturbance vector, and A, B, Bd are

matrices of appropriate dimensions. The index k counts

time steps. The state contains the errors in water depths
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and discharges in the past instants, while the input variable

is the change in discharge (Δqin)

x kð Þ ¼

qin kð Þ
qin k� 1ð Þ
:::

e kð Þ
e k� 1ð Þ

2
66664

3
77775 (23)

u kð Þ ¼ Δqin kð Þ: (24)

The water depth error is defined as the difference

between the water depth and the setpoint

e kð Þ ¼ h kð Þ � hsp kð Þ (25)

The disturbance vector W(k) contains the known dis-

turbances, which are offtake discharges (qoff) located close

to the downstream end of the canal. Therefore they affect

the downstream water depth without delay. The discharge

qoff can be expressed by any of the models considered in

this paper, using the same expressions used to model qout.

The downstream boundary condition is implemented by

linearizing the weir or the gate equation

Qgate ¼ CdgLgBg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g H �H2ð Þ

p
(26)

where for a rectangular cross section, Cdg is the gate dis-

charge coefficient, Bg is the gate width, Lg is the gate

opening, and H2 is the water depth downstream of the

gate. In this case the gate opening is constant and the down-

stream water depth is assumed to be constant, therefore the

linearized equation has only one variable, the relative water

depth (h) at the downstream end of the pool

qgate ¼ khgh (27)

where khg is the gain of the gate discharge, which can be cal-

culated as the derivative of the gate equation with respect to

the water level upstream of the gate. The same procedure is

valid if there is a weir at the downstream end of the canal.

The weir equation is the following:

Qweir ¼ 2
3
CdwLw

ffiffiffiffiffi
2g

p
H �Oð Þ3=2 (28)
where Cdw is the weir discharge coefficient, Lw is the

weir width, and O is the weir height. This equation can be

linearized and the constants can be joined in a single gain

factor

qweir ¼ khwh (29)

where khw is the gain of the weir discharge and can be

calculated by differentiating the weir equation with

respect to the water depth. The gate and weir equations

were linearized when the model was constructed.

Linearizing at every control step would improve the

procedure.

Therefore the output discharge can be modeled in the

form

qout sð Þ
h sð Þ ¼ kh (30)

where kh is either khw or khg depending on whether there is

a gate or weir at the downstream end of the canal. More

details about the state space formulation are found in

Horváth et al. ().
The predictive controller

A predictive controller has been developed based on the

work carried out by Martín Sánchez & Rodellar ().

The objective of the predictive controller is to keep the

downstream water depth at the setpoint. The control

action variable is the discharge under the upstream gate.

As a first step, the optimization is carried out resulting in

an upstream discharge value as solution.

In a second step, a gate inverse formula is used to calcu-

late the gate opening as a function of the flow (calculated by

the optimization) and the difference between the water

depth at the upstream and downstream side of the gate

(from the measured values). The controlled variable is the

water depth downstream in the pool.

To obtain the control law, in order to keep the process

output as close as possible to a predefined reference, an

optimization process is carried out over a prediction interval

[k, kþ λ], where k is the present time instant and λ is the pre-

diction horizon. This optimization is defined by the
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minimization of the following cost function:

min
Δqin

J ¼
Xλ
j¼0

eT kþ j kjð ÞPe kþ j kjð Þ� �

þ
Xλ
j¼0

ΔqTin kþ j kjð ÞRΔqin kþ j kjð Þ� �
(31)

where superscript T means transpose of the matrix, P is the

weighting matrix for the water depth error, R is the input

(change in upstream discharge) weighting matrix, and

(kþ j|k) denotes that the value of the corresponding variable

is predicted at the current instant k for a future instant kþ j.

Based on a simple linear model, that is referred to as internal

model, the controller predicts the future output values as a

function of past values of inputs and outputs and future con-

trol signals. These predictions are substituted to the cost

function J, obtaining an expression whose minimization

leads to the looked-for values. The first control action

Δqin k kjð Þ is sent to the gates while the rest are neglected. At

the next sampling time, the system is updated by measure-

ments and the optimization process is repeated with new

values. Details about the formulation of the controller can

be found in Martín Sánchez & Rodellar (), Gómez

et al. (), and van Overloop (). The details of the con-

troller tuning are presented in Appendix B (available online

at http://www.iwaponline.com/jh/016/110.pdf).

The variable calculated from the predictive controller is

the change in the input discharges. There are different pos-

sibilities to obtain the gate opening from the calculated

discharge: use another controller (for example a PID) with

a faster sampling rate, use the inverse gate equation with

the current water levels, or use the inverse gate equation

by using the predicted water levels for the following time

step (Malaterre & Baume ). In this work, the simplest

approach is used, as it is commonly used in the literature

(Deltour ; Schuurmans ); the new gate openings

are calculated by using the inverse of the gate equation. It

might also be beneficial to use the gate openings directly

as control action variable. However, this problem is not

investigated in this work, but is addressed in Horváth ().

The test cases

Two scenarios were tested for the canals: (1) a setpoint

change; and (2) a known disturbance produced by opening
an offtake weir. For the Corning canal, the scenario was

20 h long, and at 5 h a setpoint change (2.1 to 2.2 m) or a dis-

turbance occurred (1 m3/s was pumped from the

downstream end of the canal). This amount of offtake is

less than 10% of the total discharge; it corresponds to the

benchmark tests presented in Clemmens et al. (). In

all cases, these changes were known beforehand for the con-

troller. In the case of the laboratory canal, the two scenarios

are 40 min long, and the setpoint change (from 65 to 70 cm)

occurs at 10 min, as well as the disturbance: a gravity offtake

was opened at 45 m distance from the downstream end of

the canal and about 23 L/s discharge was taken, that is

about 40% of the total discharge. The offtake discharges rep-

resent the lateral offtake of a real irrigation canal. The tests

are designed for normal canal operation conditions, and it

might be also interesting to investigate the response of the

controller in more extreme situations, or several canal

pools using different configurations. The downstream

boundary condition was the hydraulic structure: a weir for

the UPC-PAC and gate for the Corning canal.

The efficiency of the controllers is analyzed by using the

performance indices suggested by the ASCE (Clemmens

et al. ) and often used (e.g., Malaterre ; Wahlin

), which are three indicators computed for each con-

trolled variable (downstream water depth).

The maximum absolute error (MAE) is the maximum

difference in percentage between the observed and the

target water level

MAE ¼ max ymeasured � ytarget
�� ��� �

ytarget
, (32)

where ymeasured is the measured water level and ytarget is the

target water level. The integral of the absolute magnitude of

the error (IAE) gives information about the average perform-

ance of the controller during the whole simulation period

(Ts)

IAE ¼
Δt
Ts

XTs

t¼0
ymeasured � ytarget
�� ��
ytarget

: (33)

While IAE is calculated over all the simulation period,

the steady state error (StE) is the maximum difference

http://www.iwaponline.com/jh/016/110.pdf
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between the target and the actual water level during the last

period of the test when the steady state should already be

reached

StE ¼ max ymeasured� � ytarget
�� ��� �

ytarget
, (34)

where ymeasured� is the average of the measured water level in

the period when the controller has already reached the new

setpoint. In the case of the Corning canal, the last 2 hours

are considered and in the UPC-PAC the last 10 minutes.

TSS indicator is the time it takes for the water level to

reach the steady state within 1.5% of maximum deviation

from the target level

ρ ¼ tj∀σ � t ) max yt � ytarget
�� ��� �
ytarget

< 0:015
� 	

, (35)

TSS ¼ min
t

ρ: (36)

The SIC software (simulation of irrigation canals) is a

hydraulic simulation software adapted to the calculation of

flows in irrigation canals developed by IRSTEA, formerly

Cemagref (Malaterre & Baume ). The SV equations

are solved numerically using the Preissmann scheme, an

implicit finite difference scheme.
Figure 6 | Comparison of the simulation of controlled water depth by four different

controllers in the Corning canal during a setpoint change experiment; the

setpoint was changed at 5 h from 2.1 m to 2.2 m: MPC-ID (solid gray line),

MPC-IDZ (dotted black line), MPC-MUS (dashed gray line), and MPC-FO

(dash-dot line).
RESULTS AND DISCUSSION

MPC is implemented based on the four above-mentioned

models. The performance of these controllers is compared

through test cases and the errors between the desired

water levels and the actual water levels achieved by the con-

troller are reported. First the results for the Corning canal

and then the numerical and experimental results for the

UPC-PAC are discussed.

Results by controlling the first pool of the Corning canal

Model predictive controllers were developed based on the

four different models and numerically implemented on the

first pool of the Corning canal as an example of Type 3
canals from the Cemagref benchmark. The results of the set-

point change and disturbance tests are discussed below.

Figure 6 shows a setpoint change of 10 cm that occurred

at 5 h in the Corning canal. The MPC-FO has unacceptably

bad performance: the water depth rises 50 cm higher than

the setpoint when a change of 10 cm was required and

relaxes after 10 h. The MPC-MUS has a considerably bad

performance, showing an overshoot of 15 cm and returns

to setpoint after 4 h. MPC-ID and MPC-IDZ perform well,

without overshoot, and the new setpoint is reached within

2 h.

Figure 7 shows the disturbance test for the Corning

canal. All models except MPC-FO have a similar perform-

ance: the disturbance occurs at 5 h. In all the cases, the

controller first increases the water depth preparing for the

extra offtake and then the water depth drops when the off-

take opens (5 h). The setpoint is recovered within 3 h

without oscillation in the case of the three controllers.

Table 3 shows the performance indicators related to this

test. The results for the setpoint change clearly show that

MPC-ID and MPC-IDZ gave satisfactory results, reaching

the setpoint faster than the other two controllers, with

MPC-FO exhibiting the worst behavior. For the disturbance

test, most of the results have similar order of magnitude,

only the MPC-FO showing a worse performance. In this

case the water level (except for MPC-FO) stays in the



Figure 7 | Comparison of the simulation of controlled water depth by four different

controllers in the Corning canal when a disturbance occurs (the offtake

discharge is increased by 1 m3/s at the downstream end); the disturbance

occurred at 5 h from 2.1 m to 2.2 m: MPC-ID (solid gray line), MPC-IDZ (dotted

black line), MPC-MUS (dashed gray line) and MPC-FO (dash-dot line).

Table 3 | Performance indicators (percentage) using four different controllers for setpoint

change and disturbance rejection test on the Corning canal

Setpoint change Disturbance rejection

MAE IAE StE TSS MAE IAE StE TSS

MPC-ID 2.75 0.22 0.10 5 1.22 0.11 0.00 0

MPC-IDZ 2.35 0.24 0.11 5.4 1.23 0.10 0.00 0

MPC-MUS 8.97 0.94 0.09 7 1.43 0.10 0.00 0

MPC-FO 26.05 4.93 0.02 12.6 2.06 0.19 0.01 6

MAE¼maximum absolute error, IAE¼ integral of absolute magnitude of error, StE¼
steady state error, TSS¼ time to reach the steady state (hours).

Figure 8 | Comparison of the simulation of controlled water depth by four different

controllers in UPC-PAC during a setpoint change experiment, the setpoint was

changed at 10 min from 0.65 to 0.7 m: MPC-ID (solid gray line), MPC-IDZ

(dotted black line), MPC-MUS (dashed gray line), and MPC-FO (dash-dot line).
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range of 1.5% difference, so the time to reach this bound is

zero. These observations coincide with the conclusions

drawn from the figures.

For the Corning canal, in general MPC-ID and MPC-

IDZ showed good performance, while the other two control-

lers (MPC-MUS and MPC-FO) did not show acceptable

performance in all cases. The unsatisfactory performance

of the FO model can be explained by the low number of

moments to be matched. Recently, Litrico et al. ()

suggested a solution for the extreme cases when CL< 1,

that is the canal pool is extremely short, so the time constant

can be forced to be zero and the system can be modeled as a

pure time delay. This approach resulted in the ID model.

For canals of this type (Type 3 in the Cemagref bench-

mark, i.e., FO system without resonance), the MPC-ID and
MPC-IDZ controllers can give good performances. This type

of canal can be modeled with both of these simple linear

models. As significant performance differences were not

observed, the ID model is preferable since it is easier to build.
Numerical results for the UPC-PAC

The four controllers were implemented numerically on the

UPC-PAC and the best ones were further tested experimen-

tally. First the results of the numerical tests, and then the

results of the experimental tests are discussed. Figure 8

shows a setpoint change test. The results are similar to

those of the Corning canal, that is MPC-MUS and MPC-

FO controllers have unacceptable performance, while both

MPC-ID and MPC-IDZ perform well.

Figure 9 shows a disturbance test on the UPC-PAC

canal. Within 20 min, all controllers reach a 5 mm range

from the setpoint. MPC-IDZ and MPC-MUS recover in

15 min, but MPC-MUS recovers through some oscillations.

MPC-ID has no oscillations at all, but it is the slowest

taking 30 min to recover. Table 4 presents the performance

indicators. For the setpoint change test, the table values

show the same tendency as observed in Figure 8:

MPC-MUS and MPC-FO controllers are clearly the worst,

MPC-ID and MPC-IDZ have the same order of magnitude,

and MPC-ID is the best. For the disturbance test, all the

values have similar order of magnitude.



Figure 9 | Comparison of the simulation of controlled water depth by four different

controllers in the UPC-PAC, at 10 min an offtake was opened and 25 L/s

discharge was taken from the canal: MPC-ID (solid gray line), MPC-IDZ (dotted

black line), MPC-MUS (dashed gray line), and MPC-FO (dash-dot line).
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The difference between the two responses can also be

seen in Figure 9: while the response of the MPC-ID con-

troller is slow, the response of MPC-IDZ is faster with

some oscillations. This fact might be the cause of the differ-

ence between the MAE (it reaches a bigger extreme in the

case of the MPC-ID). Let us note that this difference is 1.15

and 1.95%, less than half a centimeter. Similar obser-

vations can be added for the integral absolute error: for

MPC-ID it is 0.54% and for MPC-IDZ it is 0.19%. The

difference is very small and the reason is the different

nature of the responses. The steady state was reached

between 10 and 20 min for all models. For the setpoint

change test, the MPC-ID controller was the fastest to

reach the steady state, then the other controllers

MPC-IDZ, MPC-MUS, and MPC-FO increasing the time

to reach it. In the case of the disturbance test, the

MPC-IDZ was the fastest and the MPC-ID was the slowest.
Table 4 | Performance indicators (in percentage) using four different controllers for setpoint c

Setpoint change

MAE IAE StE

MPC-ID 3.94 0.71 0.72

MPC-IDZ 4.19 0.91 0.96

MPC-MUS 35.16 2.65 0.43

MPC-FO 37.53 4.86 0.14

MAE¼maximum absolute error, IAE¼ integral of absolute magnitude of error, StE¼ steady sta
Based on these results, experiments are designed to test

the controllers in a real environment. While for the disturb-

ance test, the performance of all controllers was acceptable,

the setpoint test clearly shows that for the UPC-PAC only

the MPC-ID and MPC-IDZ are worthy of further testing.
Experimental results on the canal UPC-PAC

The controllers were implemented in the laboratory canal

UPC-PAC. The canal has a supervisory control and data

acquisition system (SCADA) developed in Matlab/Simulink

environment (Mathworks ). Hence, the control algor-

ithm only has to be programmed in Embedded Matlab

language and then it can directly be tested on the canal.

The measurement data from the water depths and the gate

openings are processed by the SCADA system and the con-

trol actions are sent to the gates. The best performing

controllers (MPC-ID and MPC-IDZ) were implemented in

the laboratory and tested experimentally. The following

results are the measured values of the water levels from

the SCADA system of the laboratory canal.

Figure 10 shows the results of the setpoint change test.

Both MPC-ID and MPC-IDZ were able to control the

water level in the same manner. The water levels are

within a range of 0.5 cm around the setpoint. Figure 11

shows the reaction to known disturbances. Both MPC-ID

and MPC-IDZ were able to control the water level in the

same manner. The water levels are within a range of

0.5 cm around the setpoint. Both MPC-ID and MPC-IDZ

were implemented successfully in the UPC-PAC experimen-

tal facility.

Table 5 shows that both MPC-ID and MPC-IDZ were

able to control the UPC-PAC. The experiments showed
hange and disturbance rejection test on the UPC-PAC canal

Disturbance rejection

TSS MAE IAE StE TSS

11.8 1.95 0.54 0.17 16.7

13 1.15 0.19 0.14 0

15.1 1.58 0.15 0.08 10.7

20.1 2.03 0.28 0.03 14

te error, TSS¼ time to reach the steady state (min).



Figure 11 | Comparison of measured water depth in the UPC-PAC during a known

disturbance experiment: 10 min 30 L/s discharge offtake opened (the canal

discharge was increased from 60 to 90 L/s. Two different implemented

controllers: solid line the MPC-ID and dashed line the MPC-IDZ.

Figure 10 | Comparison of measured water depth in the UPC-PAC during a setpoint

change experiment: the setpoint was changed at 10 min from 65 cm to

70 cm. Two different implemented controllers: solid line the MPC-ID and

dashed line the MPC-IDZ.

Table 5 | Performance indicators (percentage) using the MPC-ID and MPC-IDZ controllers

for setpoint change and disturbance rejection experiment on the UPC-PAC

canal

Setpoint change Disturbance rejection

MAE IAE StE TSS MAE IAE StE TSS

MPC-ID 4.65 0.82 0.84 11.8 1.59 0.78 1.13 10.7

MPC-IDZ 4.99 0.81 0.71 12.6 1.76 0.40 0.22 11.5

MAE¼maximum absolute error, IAE¼ integral of absolute magnitude of error, StE¼
steady state error, TSS¼ time to reach the steady state (min).
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that the MAE is less than 5% with both models for the set-

point change test, and less than 2% for the disturbance

rejection test. The steady state error is about 1%. The

steady state was reached slightly, but not considerably

faster in the case of the ID model.

The experimental results confirm those of the numerical

tests. In the experimental results, the water levels have

steady state offset; there is always about 0.5 cm difference

between the actual water level and the setpoint. Both con-

trollers have acceptable test results given the constraints of

the facility, which are: (1) the minimum gate movement is

2 mm; and (2) the water level measurement error is

10 mm. For the disturbance rejection test, the water level

moved less than 2 cm and the discharge increased as a

step without excessive gate movements.

Both MPC-ID and MPC-IDZ were able to control a

canal of Type 1, a short canal prone to resonance. It is

important to mention that these two controllers gave good

performance with sufficiently loose tuning, in order to

avoid instability of the controller. Alternative ways

to address the control of resonance-sensitive canals can be

to filter out the resonance (Schuurmans ; Horváth

et al. ) or include the resonance in the modeling stage

(van Overloop et al. b; Horváth ).

Both canals examined were short, having FO behavior,

and one of them being resonant. In the case of the resonant

canal, the resonance should be taken into account. Here,

only a less strict tuning was considered with respect to this

problem. The control of this kind of canal pool can be

more efficient using models especially developed for this

specific kind of canal pool.

On computational efficiency

For the implementation of the predictive controllers, a linear

quadratic optimization problem is solved at each discrete-

time control instant. The size of this problem has a direct

influence on the execution time of the controller. In this

case, the size of the matrices in the optimization problem

is the model dimension multiplied by the length of the pre-

diction horizon measured in number of time steps. For the

ID and IDZ models, the system has a dimension 13, while

in the case of the MUS and FO models the system has a

dimension of 5. This difference is more than double,
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which can increase the execution time. However, it is impor-

tant to mention that in both cases the execution time is

significantly small in comparison to the control time step,

especially in the case of the Corning canal. Although with

current settings the ID and IDZ models require longer

execution time, for the purpose of the application this

does not cause a disadvantage.

Generalization of the findings

The ID and IDZ models gave good performance for two

example canals belonging to Cemagref benchmark canal

Types 1 and 3. While the waves in the UPC-PAC are

under-damped, they are damped in the Corning canal. As

to the order of the system, both canals belong to FO systems.

The other canal types define canals whose behavior can be

modeled with second order or second order with time

delay. These might show better results with other modeling

approaches. For example, Litrico & Georges () show a

good time domain model for a canal of second order with

delay. Therefore, the findings cannot be generalized to all

canal types in a straightforward manner. More numerical

test and time and frequency domain analysis would be

needed to extend these results.
CONCLUSION

Four simplified models (Muskingum, FO model based on

the Hayami equation, ID and IDZ) have been compared

for control purposes on two different types of short canal.

The comparison has been based on MPC of one canal

pool. The comparison could be further extended by using

several canal pools and different configurations. The results

show that the performance of the controller is significantly

influenced by the choice of the model. From the simulation

and experimental results, only the ID and IDZ models

proved to be acceptable on these two example canals. One

is a laboratory canal, very short and flat, prone to resonance;

the other is the first pool of the Corning canal, which is rela-

tively long and flat. Both canals belong to the group of

canals characterized by FO behavior.

The range of validity of the conclusions drawn in this

work can be extended to two of the canal families
characterized by the Cemagref benchmark. One is the

so-called Type 1, which exhibits a FO dynamics with reson-

ance. The other is the so-called Type 3, which is a FO system

without resonance. A similar procedure can be adopted to

study different canal types.
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