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a b s t r a c t

Irrigation or drainage canals can be controlled by model predictive control (MPC). Applying MPC with an
internal model in the presence of unknown disturbances in some cases can lead to steady state offset.
Therefore an additional component should be implemented along with the MPC. A new method
eliminating the offset has been developed in this paper for MPC. It is based on combining two basic
approaches of MPC. It has been implemented to control water levels in the three-pool UPC laboratory
canal and further numerically tested using a test case benchmark proposed by the American Society of
Civil Engineers (ASCE). It has been found that the developed offset-free method is able to eliminate the
steady-state offset, while taking into account known and unknown disturbances.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Automatic control of delivery canals has been adopted in the
last years with the purpose of improving the efficiency in the
management of irrigation freshwater. The idea is to automatically
manipulate structures, such as gates, pumps and others, in order
to achieve a control objective, which can be stated in terms of
discharges or water levels. Typical control operations involve
setpoint changes in these variables, according to management
policies, and maintenance of such setpoints in spite of the
presence of disturbances. Most common disturbances are pro-
duced due to water offtakes from the controlled canal to second-
ary canals or to water users. These disturbances may be known, if
offtakes are scheduled in time and quantity, or unknown.

One of the control methods used to control open channels is
model predictive control (MPC) (Gómez, Rodellar, & Mantecón, 2002;
van Overloop, 2006; Igreja, Cadete, & Lemos, 2011; Negenborn, van
Overloop, Keviczky, & de Schutter, 2009; van Overloop, Clemmens,
Strand, Wagemaker, & Bautista, 2010a; Zafra-Cabeza, Maestre, Ridao,
Camacho, & Sánchez, 2011; Lemos, Machado, Nogueira, Rato, & Rijo,
2009; Aguilar, Langarita, Linares, & Rodellar, 2009, 2012).

The term MPC refers to a family of control algorithms whose
common property is having state and output predictions by using an
internal model and carrying out an optimization using the present

and future predicted data (Mosca, 1995; Martín Sánchez & Rodellar,
1996; Camacho & Bordons, 1998).

A predictive controller calculates a control action based on the
difference between the existing and the predicted errors during a
prediction horizon. It does not only act on the error at the first
instant, but it prepares an action that would minimize the errors over
the prediction horizon. If the internal predictive model was ideally
correct, the controller would be able to drive the system exactly to
the setpoint. However, if the model is different than the real process,
or there are disturbances or noise that are not described by the model,
the controller might not be able to achieve it. In particular, for constant
offset-like disturbances, the controlled output could reach a steady
state but with an undesired offset with respect to the setpoint. There
are two main ways of eliminating the offset: (1) model the distur-
bances, or (2) extend the predictive controller with an integral action.

In the industry, the inclusion of disturbance models is a
common prerequisite in any standard industrial MPC implementa-
tion (Venkat, Rawlings, & Wright, 2006; Camacho & Bordons,
1998) considering that the origin of the disturbances is known.
Pannocchia and Rawlings (2003) and Badgwell and Muske (2002)
simultaneously arrived at the same conclusions about disturbance
models and deduced conditions for offset free tracking. These
conditions are summarized in Borrelli and Morari (2007).

The disadvantage of disturbance models is the difficulty in tuning
the observer, since very often the nature of the disturbance is
unknown. Wang (2009) describes the use of a built-in integrator,
but it can lead to instabilities in some cases. To solve this problem an
exponential data weighting is proposed (Wang, 2001). The predictive
control approach by Martín Sánchez and Rodellar (1996) proposes an
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incremental formulation, which is proved to cancel offsets for con-
stant disturbances.

In the field of canal control, Begovich, Ruiz, Besançon, Aldana,
and Georges (2007) use the internal model principle: in order to
reject constant disturbances it is necessary that an integrator
appears in the closed loop system, that is an internal model of
the constant disturbance. Therefore they propose an augmented
model, similar to that of Wang (2009), which contains a distur-
bance model based on integrators. The use of additional feedfor-
ward component in the control loop is described in Aguilar et al.
(2009) in a predictive control scheme.

Weyer (2008) proposes a LQ regulator that can deal with
known disturbances. In Cantoni et al. (2007) a feedforward term
is added that also acts as a “decoupler”.

In this work a new offset-free MPC is proposed based on the
predictive controller developed by Rodellar, Gómez, and Bonet
(1993). This controller has zero steady state offset but cannot
handle known disturbances well. The basic idea is to combine the
two controllers to achieve a control that can lead to offset-free
result and able to handle known and unknown disturbances. The
proposed controller has been implemented and tested numerically
and experimentally on the laboratory canal of the Technical
University of Catalonia (UPC-PAC) and numerically on the ASCE
Test Canal 2. Apart from the proposed method, other four MPC
methods have been implemented numerically for comparison
purposes.

This paper is structured as follows. Section 2 describes the
UPC-PAC laboratory facility and the ASCE Test Canal 2. Section 3
presents the modelling issues and Section 4 presents the
control developments. In order to build an offset free controller,
three steps are followed: first, a basic controller is discussed
(Section 4.1); second, another controller is described with
integral action (Section 4.2); and finally the new offset-free
predictive control is derived (Section 4.3). Additionally, in
Sections 4.4 and 4.5 two methods are revised from the litera-
ture that were developed to eliminate steady state offset and
are implemented in this work for comparison purposes. The
test cases are presented in Section 5 and experimental and
numerical results are shown and discussed in Section 6. Finally
the work is concluded (Section 7).

2. Case studies

2.1. Laboratory canal

The UPC-PAC canal (Canal de Prueba de Algoritmos de Control –
Universitat Politècnica de Catalunya) is specially designed to develop
basic and applied research in the field of control of irrigation canals.
The canal is 0.44 m wide and 220 m long and has zero slope.

In this work the canal is configured to have three pools (see
Fig. 1), and each pool is separated with a motorized sluice gate. The
gravity offtakes are located at the downstream end of each
canal pool.

The SCADA system was developed in Matlab/Simulink environ-
ment, which allows the test of any control algorithm developed in
Embedded Matlab language (Mathworks, 2008).

The UPC-PAC is short, completely affected by backwater. The
low friction and the zero slope enhance the appearance of
resonance waves. This phenomenon in the laboratory canal has
been previously studied (Horváth, 2013; van Overloop, Horváth, &
Aydin, 2014). it is not presented in detail herein, since this paper
deals with another problem. More information about the labora-
tory canal can be found in Sepúlveda (2008).

2.2. The ASCE Test Canal 2

Test Canal 2 has 8 canal pools and the control objective is to
keep the downstream water levels at their setpoints by controlling
the gate openings in the system. Gravity offtakes are located at the
downstream end of each pool. The geometry of the canal and the
details of the tests can be found in Clemmens, Kacerek, Grawitz,
and Schuurmans (1998).

3. Modelling

3.1. Modelling of a canal reach

A third order linear canal model is used in this work. This
model was first used for simulation purposes by Weyer (2001).
The model has been recently tested for control purposes (van
Overloop et al., 2014). The model can be deduced from the Saint-
Venant equations using the following assumptions: (1) the advec-
tion is neglected, (2) the depth, the wet cross sectional area and
the hydraulic radius are considered constant. Then the Saint-
Venant equations are discretized using three discretization points,
then they are linearized and transformed to the Laplace domain.
The result is a third order transfer function without delay, linking
the upstream discharge and the downstream water level in the
following form:

GIRðsÞ ¼
1
Ass

z}|{Integrator
� ω2

0

s2þ2ζω0sþω2
0

zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{Resonance
ð1Þ

Note that following this development there is no time delay in the
model: the wave behaviour accounts implicitly for the time delay.
Details about the model can be found in van Overloop et al. (2010b).

The integrator part has a gain that is inversely proportional to the
backwater area (As). The second order component is a damped
oscillator with natural frequency ω0, damping ratio ζ and resonance
peak Mr . As is the backwater area. The natural frequency ω0 is
approximated by the resonance frequency. For the ith canal reach, the
downstream water level hiðsÞ can be expressed (van Overloop et al.,
2010b) as follows:

hiðsÞ ¼
ω2
0

Ass3þ s2

Mr
þAsω2

0s
qiðsÞ�

2s2þ 2
AsMr

sþω2
0

Ass3þ s2

Mr
þAsω2

0s
qiþ1ðsÞ ð2Þ

Fig. 1. Scheme of the three pool configuration of the UPC-PAC. Fig. 2. Schematic view of a canal pool.
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where qi is the upstream discharge and qiþ1 is the downstream
discharge. The notation is illustrated in Fig. 2. The quantities hi; qi and
qiþ1 are values relative to a steady state, a nominal operating point
around which the non-linear system is linearized. In this way, the
relative water level hi can be expressed as

hiðtÞ ¼HiðtÞ�H0: ð3Þ
where HiðtÞ is the absolute water level and H0 is the steady state
water level.

3.2. State space model formulation

The objective of this work is to control the water level at the
downstream end of each canal pool by changing the discharge
(upstream and downstream) in the presence of known and
unknown disturbances. In this case these disturbances are offtakes
(discharge is taken from the canal) located at the downstream end
of the canal pools.

The water level error ei can be written as the difference
between the actual water level and the setpoint hspi, that is

eiðsÞ ¼ hiðsÞ�hspi ð4Þ
By combining and discretizing Eqs. (2) and (4), the water level
error can be expressed in terms of the input discharges. From this
expression, a state space model can be constructed in the follow-
ing form:

x kþ1ð Þ ¼ Ax kð ÞþBu kð ÞþBdd kð Þ ð5Þ
where x is the n-dimensional state vector containing the water
level errors and the discharges at the previous instants, u is the m-
dimensional control vector that contains the change in gate
discharge ðΔqiÞ, A is a n�n square matrix, B is a n�m matrix
and Bd is a n� nbd matrix, where nbd is the number of known
disturbances, which are included in the nbd-dimensional vector d.
The change in discharge is expressed as

ΔqiðkÞ ¼ qiðkþ1Þ�qiðkÞ: ð6Þ
This model provides the relationship between the upstream/

downstream discharge and the downstream water level. Since the
actuators are the gates, there is a need to convert the calculated
discharge to gate opening. This problem is addressed in Malaterre
and Baume (1999). In this work the simplest option was used: the
controller calculates a control action as discharge, and then the
gate openings are obtained by using the water level measurements
and the inverse non-linear gate equation. If the gate opening is not
physically feasible (e.g. if the gates come out of water), the
maximum possible gate opening is sent to the actuator.

4. Controller development

4.1. Basic predictive control, MPC-B

The predictive control law is obtained based on Martín Sánchez
and Rodellar (1996) and Camacho and Bordons (1998). The control
formulation is performed in two steps: (1) a prediction of the
future state vector over a prediction horizon, and (2) a minimiza-
tion problem to derive the control. In the following this control
method is named as MPC-B.

Prediction: To establish the prediction, a time horizon ½k; kþλ� is
considered, where k is the current real time instant and λ is a time
horizon to be selected as a parameter. The notation xðkþ jjkÞ indicates
the prediction of vector x for a future time instant kþ j within this
interval. The prediction starts with the following equation:

x kþ1 k
��� �¼ Ax k k

��� �þBu k k
��� �þBdd k k

��� � ð7Þ
where xðkjkÞ ¼ xðkÞ, uðkjkÞ ¼ uðkÞ and dðkjkÞ ¼ dðkÞ.

The same prediction can be written over the entire prediction
horizon ½k; kþλ�

x kþ j k
��� �¼ AjxðkÞþ

Xn ¼ j�1

n ¼ 0

AnBuðkþnjkÞþ
Xm ¼ j�1

m ¼ 0

AmBddðkþmjkÞ

ð8Þ

for j¼ 1;…; λ.
All the single predictions can be lumped together in the

following form:

X¼Ax0þBUþBdD ð9Þ

where x0 ¼ xðkjkÞ.
Control: In the previous section the prediction was described

over the prediction horizon, and the state equation for this horizon
was expressed in the matrix form in Eq. (9). The control vector U is
a vector containing mλ unknowns: the values of the control vector
u for each reach at every time kjk; kþ1jk;…; kþλ�1jk. The whole
vector U is obtained through the minimization of the following
cost function with constraints:

min
U

JB ¼XTPXþUTRU ð10Þ

xminoxoxmax and uminououmax, where P ðλn� λnÞ and R ðλm�
λmÞ are weighing matrices and X is the state vector for the whole
prediction horizon. More explicitly the cost function can be
written in the following form:

JB ¼
Xλ
j ¼ 1

x kþ j k
��� �TPjx kþ j k

��� �þ Xλ�1

j ¼ 0

u kþ j k
��� �TRju kþ j k

��� � ð11Þ

where Pj is an n�n and Rj is an m�m matrix.

Table 1
Steady state.

Qappr Sp1 Sp2 Sp3 G1 G2 G3 W3
(l/s) (cm) (cm) (cm) (cm) (cm) (cm) (cm)

60 85 70 55 7.4 12.6 11.8 35

Table 2
Setpoint change test.

Time Qappr Sp1 Sp2 Sp3 W1 Qw1 W2 Qw2 W3
(min) (1/s) (cm) (cm) (cm) (cm) (1/s) (cm) (1/s) (cm)

0 60 85 70 55 90 0 90 0 35
30 60 75 70 55 90 0 90 0 35
60 60 85 70 55 90 0 90 0 35
90 60 85 60 55 90 0 90 0 35

180 60 85 70 55 90 0 90 0 35
210 84 85 70 60 90 0 90 0 35
240 60 85 70 55 90 0 90 0 35
270 End

Table 3
Disturbance test.

Time Qappr Sp1 Sp2 Sp3 W1 Qw1 W2 Qw2 W3
(min) (1/s) (cm) (cm) (cm) (cm) (1/s) (cm) (1/s) (cm)

0 60 85 70 55 90 0 90 0 35
30 60 85 70 55 75 20 90 0 35
60 60 85 70 55 90 0 90 0 35
90 60 85 70 55 90 0 60 20 35

120 60 85 70 55 90 0 90 0 35
150 End
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In this work all weighing matrices Pj and Rj are chosen to be
equal and diagonal, Pj ¼ P for j¼1,2,…,λ and Rj ¼ R for j¼ 0;
1;…; λ�1. In other words, the weights of the optimization do
not change during the prediction horizon. The matrix R contains
the corresponding weights on the input, the matrix P contains the
weights on the state.

4.2. Controller with integral action, MPC-FB

A controller with integral action is presented in Rodellar,
Gómez, and Martín Vide (1989, 1993). Here the same controller
is described using matrix formulation in order to be in similar
format as MPC in Section 4.1. This controller is abbreviated as
MPC-FB in the following, as it does not contain feedforward, only
feedback parts. The same state as expressed in Eq. (5) is used. Then
the incremental state and the incremental input can be defined in
the following way:

xinc kð Þ ¼ x kð Þ�x k�1ð Þ ð12Þ
and

uinc kð Þ ¼ u kð Þ�u k�1ð Þ: ð13Þ
If the control action variable u is chosen to be the change of
discharge, ui is the change of change of discharge. Using the above
expressions for the incremental variables, from Eq. (5) can be
expressed in the following incremental form:

xinc kþ1ð Þ ¼ Axinc kð ÞþBuinc kð ÞþBddinc kð Þ: ð14Þ
The control law will be calculated during a given interval, with the
length of λ, called the prediction horizon: ½k; kþλ�. In this formula-
tion of predictive control constant control input is assumed over
the entire prediction horizon, therefore the incremental input is

zero after the first increment:

uinc nð Þ ¼ 0 for n4k: ð15Þ
Using the incremental model, the state can be summed up during
all the prediction horizon

x kþλð Þ ¼ ðAsumþ IÞx0þBsumuðkÞþ �Asumx k�1ð Þ�Bsumu k�1ð Þ� �
ð16Þ

where Asum and Bsum are the following matrices:

Asum ¼
Xλ
j ¼ 1

Aj; Bsum ¼
Xλ
j ¼ 1

Aj�1B ð17Þ

The sum of the state equations during the prediction horizon,
Eq. (16), can be expressed in a more compact form:

Xm1 ¼ Am1x0þBm1Um1þBdm1Dm1: ð18Þ
The terms of Eq. (18) are detailed one by one. The term Xm1 is

the state at the end of the prediction horizon and Um1 is the input
vector of the system at the present instant k:

Xm1 ¼ x kþλð Þ ð19Þ

Um1 ¼ uðkÞ: ð20Þ
The matrices multiplying the state and the input are the

following, respectively,

Am1 ¼ Asumþ I ð21Þ

Bm1 ¼ Bsum ð22Þ
where the matrices Asum and Bsum are defined by Eq. (17). The
definitions of matrices Dm1 and Bdm1 are the following:

Bdm1 ¼ �Asumx k�1ð Þ�Bsumu k�1ð Þ� � ð23Þ

Table 4
Test 1.

Pool Offtake initial
flows (m3/s)

Check initial flows
(m3/s)

Scheduled offtake changes at
2 h (m3/s)

Resulting check
flows (m3/s)

Unscheduled offtake changes at
14 h (m3/s)

Resulting check
flows (m3/s)

Heading – 11.0 – 13.5 – 11.5
1 1.0 10.0 – 12.5 – 10.5
2 1.0 9.0 – 11.5 – 9.5
3 1.0 8.0 – 10.5 – 8.5
4 1.0 7.0 – 9.5 – 7.5
5 1.0 6.0 1.5 7.0 – 5.0
6 1.0 5.0 1.0 5.0 �2.0 5.0
7 1.0 4.0 – 4.0 – 4.0
8 1.0 3.0 – 3.0 – 3.0
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Fig. 3. Known setpoint change, Test 1, with continuous line the measured water levels in the three pools, with horizontal dashed line the setpoint and with vertical dashed
line** the time when the disturbance occurred is shown: (a) MPC-B and (b) MPC-OF.
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Dm1 ¼ 1: ð24Þ
A predictive control objective associated to Eq. (18) could be to

find the control vector Um1 such that the state vector at kþλ,
xðkþλjkÞ ¼Xm1 is as close as possible to the setpoint through the
minimization of

min
Um1

JFB ¼ x kþλjkð ÞTPm1x kþλ k
��� �þuðkjkÞTRm1uðkjkÞ; ð25Þ

in the matrix form

min
Um1

JFB ¼XT
m1Pm1Xm1þUT

m1Rm1Um1: ð26Þ

where Pm1 (n�n) and Rm1 (m�m) are weighing matrices. Pm1 is a
diagonal matrix with size n�n that has zero entries for the states
that are not to be penalized and non-zero entries ðpm1Þ for the
states that are to be penalized. In this work these states are the
water level errors.

4.3. Offset-free predictive control, MPC-OF

The controller described in this section is denoted as MPC-OF in
the following. In this step the controller objectives presented in
Section 4.1 (Eq. (10)) with the one presented above in Section 4.2
(Eq. (25)) are combined. The aim is to combine the advantages of
both strategies. The basic method (MPC-B) has good reaction to
known disturbances, but it is not able to respond without offset to
unknown disturbances. The simplified method (MPC-FB) reaches
always offset free response, however, its response to known
disturbances is not satisfactory. The control objective defined here
aims to find the control vector U (including u k k

��� �
…u kþλ�1 k

��� �Þ,
to balance between the anticipatory action (JB, Eq. (10)) and the
integral action (JFB, Eq. (25)) of the MPC. MPC-B, described in
Section 4.1, incorporates the known future disturbances into its
objective function. On the other hand, MPC-FB (Section 4.2) has
integral action and the offset free property. In order to keep the
goal of both controllers, the balance between the two actions is
pursued by combining these two objective functions:

J ¼ JBþ JFB ð27Þ
This performance criterion has two parts, one belonging to

each formulation. It can be written in a more compact form as

min
U

J ¼XT
m4Pm4Xm4þUTRU: ð28Þ

where

Xm4 ¼Am4x0þBm4UþBdm4Dm4 ð29Þ

and the terms are explained one by one. The state vector Xm4 is
compiled in the following form:

Xm4 ¼
X

Xm1

" #
ð30Þ

where x contains the state all the time instants during the
prediction horizon and Xm1 ¼ xðkþλÞ.

The vectors x0 and U are the same as in Eq. (9). The input vector
U contains the input during all the prediction horizon. This is the
same input vector used in the previously developed MPC, in
Section 4.1. However, the input vector used in this section Um1

contains the input only for the present instant. Therefore the
combination of the two state spaces is based on connecting both
vectors as follows: the first part (of length m) of the input vector U
(that is uðkÞÞ will be made equal to the input vector Um1, as

Um1 ¼Uð1 : mÞ: ð31Þ

The matrices are also combined using the corresponding matrices
from the two formulations:

Am4 ¼
A

Am1

" #
ð32Þ

Bm4 ¼
B

Bm1 0n�mðλ�1Þ

" #
: ð33Þ

Matrix Bm4 has some zero entries. The reason for this is the
different lengths of the input vectors: while the input vector U of
the MPC from Eq. (9) is mλ long, the input vector of the method
presented here has an input vector Um1 with length of m.

The disturbance vector Dm4 is the combination of the distur-
bance vector of the two methods:

Dm4 ¼
D

Dm1

" #
: ð34Þ

Just as the disturbance vector, the matrix multiplying the dis-
turbance vector is the combination of the two matrices from the
two methods:

Bdm4 ¼ Bd Bdm1½ �: ð35Þ

The weighing matrix Pm4 has the following form:

Pm4 ¼
P 0nλ�n

0n�nλ Pm1

" #
: ð36Þ

0 30 60 90 120 150 180 210
0

5

10

15

20

25

30

Time (min)

G
at

e 
op

en
in

g 
(c

m
)

0 30 60 90 120 150 180 210
0

5

10

15

20

25

30

Time (min)

G
at

e 
op

en
in

g 
(c

m
)

Fig. 4. Gate openings, known setpoint change, Test 1, Gate 1: black solid line, Gate 2: gray line, Gate 3: black dashed line: (a) MPC-B and (b) MPC-OF.
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This matrix is the combination of the weighing matrix P presented
in Section 4.1 under Eq. (10) and the matrix Pm1 from Section 4.2,
in Eq. (26).

The weighing matrix R is the same presented in Section 4.1
after Eq. (10). Finally, the control vector U is obtained through the
solution of the problem defined by Eqs. (28) and (29) at each
sampling instant k. The tuning is detailed in Section 5.5.

4.4. Model predictive control with integral action, MPC-I

Model predictive control with integral action based onWang (2009)
is implemented. This controller is noted as MPC-I in the following. In
this formulation, a new state space vector xint is constructed by
combining the incremental variable (Eq. (12)) and the output:
xint ¼ ½xiðkÞ yðkÞ�T : ð37Þ
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Fig. 5. Known disturbance, Test 2, with continuous line the measured water levels in the three pools, with horizontal dashed line the setpoint and with vertical dashed line
the time when the disturbance occurred is shown: (a) MPC-B and (b) MPC-OF.
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Fig. 6. Gate opening, known disturbance, Test 2, Test 1, Gate 1: black solid line, Gate 2: gray line, Gate 3: black dashed line: (a) MPC-B and (b) MPC-OF.
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Fig. 7. Setpoint change unknown in advance, Test 3, with continuous line the measured water levels in the three pools, with dashed line the setpoint: (a) MPC-B and
(b) MPC-OF.
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Using this state vector an augmented state space can be constructed

xiðkþ1Þ
yðkþ1Þ

" #
¼ A oTm

CA 1

" #
xiðkÞ
yðkÞ

" #
þ B

CB

� 	
uiðkÞ ð38Þ

yðkÞ ¼ ½om 1�
xiðkÞ
yðkÞ

" #
ð39Þ

where om is a horizontal vector of zeros with length equal to the
original state. Then MPC can be developed as introduced in Section 4.1
using the augmented state vector xint .

4.5. Model predictive control with observer, MPC-O

Model predictive control with observer based on Pannocchia &
Rawlings (2003) is implemented. It is denoted as MPC-O in the
following.

Using state and output disturbances and augmenting the
system with an observer, the following expression can be written:
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Fig. 8. Gate opening, setpoint change unknown in advance, Test 3, Gate 1: black solid line, Gate 2: gray line, Gate 3: black dashed line: (a) MPC-B and (b) MPC-OF.
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Fig. 9. Unknown disturbance, Test 4, with continuous line the measured water levels in the three pools, with horizontal dashed line the setpoint and with vertical dashed
line the time when the disturbance occurred is shown: (a) MPC-B and (b) MPC-OF.
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Fig. 10. Gate opening, unknown disturbance, Test 4, Gate 1: black solid line, Gate 2: gray line, Gate 3: black dashed line: (a) MPC-B and (b) MPC-OF.
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where x̂ is the observer state, d̂ is the observed disturbance, L1 and
L2 are the gains of the observer and Bd;Cd are matrices belonging
to the disturbance model constructed using the following condi-
tions: (1) in order to create an observer for the state space (A,C)
should be observable; and (2) according to Pannocchia & Rawlings
(2003), in order to achieve offset-free control the number of
disturbance states should be equal to the number of measure-
ments. Any Bd and Cd can be chosen arbitrarily as long as the
following condition is kept:

rank
I�A �Bd

C Cd

" #
¼ nþnd ð41Þ

where n is the number of states and nd is the number of dis-
turbance states.

5. Test cases for the control algorithms

Several scenarios are established in order to test the predictive
controllers during this work. Numerical simulations have been
carried out by the SIC software (Simulation and integration of
control for canals) (Malaterre, 2012) that solves numerically using
finite differences the Saint-Venant equations. For the physical tests
in the experimental canal UPC-PAC, all the algorithms have been
implemented using Matlab (Mathworks, 2008).

All tests start and finish with the steady state conditions as
shown in Table 1. The discharge ðQapprÞ is approximately 60 l/s. The
setpoint of the water level in the first pool (Sp1) is 85 cm, in the
second pool (Sp2) is 70 cm and in the third pool (Sp3) is 55 cm.
The gate openings to achieve the given water levels in each pool
are shown for the three gates (G1, G2 and G3). The height of the
final weir (W3) was set to 35 cm (See Fig. 2).

5.1. Test 1: setpoint changes

This test contains three consecutive setpoint changes. First at
Pool 1, then after reaching the original situation, a setpoint change
is required in Pool 2 and finally in Pool 3. All setpoint changes are
10 cm (except for the change in Pool 3), this value being more than
10% of the actual water level. Since the last pool has a weir at the
downstream end, the last setpoint change implies change in the
discharge. Table 2 shows the test step by step. The columns Sp
show the actual setpoints, and the columns W and Qw show the
weir height and the approximate weir discharge, respectively. In
this test all offtakes are closed, the weir height being at its
maximum (90 cm). There is flow only over Weir 4, which leaves
the canal.

5.2. Test 2: reaction to disturbances

The disturbance rejection was tested by using the lateral weirs
(See Table 3). In this test two disturbances occur: after 30 min, the
Weir 1 at the downstream end of Pool 1 is opened and it is closed
after 60 min. At 90 min the weir at the end of the second reach
(Weir 2) is opened for 30 min. The offtake is closed at 120 min and
the test is finished at 150 min. In both cases, the offtake discharge
is about 20 l/s. This is one-third of the actual discharge, hence it is
a considerable change.

5.3. Test 3 and Test 4

The setpoint changes in Test 3 are the same as in Test 1, but
their timing and magnitude are unknown by the controller in

advance. The same is true for the disturbance test: Test 4 is similar
to Test 2, but with disturbances that are unknown all the time for
the controller.

5.4. Test on the ASCE Test Canal 2

The controllers were also evaluated using the ASCE test cases.
The test scenario is 24 h long and detailed in Table 4. It is Test
1 from the described benchmark tests (Clemmens et al., 1998). The
first 12 h of the test contain known changes and the second part of
the test, from 12 to 24 h, contains unknown changes.

As this is a longer canal and the second order waves are not so
significant, this canal was modeled for control purposes using the
Integrator Delay model (Schuurmans, Bosgra, & Brouwer, 1995).

5.5. Tuning parameters

The general tuning parameters ðpi; ri; λÞ were the same as
chosen previously for controller tuning, while the tuning para-
meter of the presented offset-free method has been chosen in the
following way: the weight in the integration procedure was
increased until offset-free control was achieved in the given case.
As a general guidance this value can be chosen using Bryson's rule
(Bryson, 1975): the weights are the reciprocals of the squares of
the maximum allowed values:

pi ¼
1

eMAVE2
ð42Þ

where eMAVE is the Maximum Allowed Value Estimate of the
water level error, and pi is a diagonal entry of the weighing matrix
Pj from Eq. (11). The matrices Pj ðj¼ 1;‥λ) are diagonal matrices,
having pi entry for the error states and zero entry for the other
states. The matrix Rj ðj¼ 1;‥λ�1Þ is also a diagonal matrix, with ri
at all diagonal entries. The matrix Pm1 has similar structure as Pj:
all entries are zero except the diagonal entries corresponding to
the error states. There the entries are pm1. The final tuning values
of the offset free test are pi ¼ 1111, ri ¼ 12;346 for the distur-
bance and ri ¼ 4444 for the setpoint test. For both tests, we have
pm1 ¼ 1111.

6. Results

6.1. Experimental results

The offset-free method (MPC-OF) was implemented and the
above described four tests were carried out in the experimental
facility of the Technical University of Catalonia described in
Section 2.1. The results section shows the measured water level
signals obtained from the SCADA system of the UPC-PAC. The
prediction horizon was set to 15 samples (λ¼15) for the experi-
mental tests. A sampling period of 10 s was used for measure-
ments and control, so that the gates were adjusted at every 10 s.

The first case is the known setpoint change (Test 1), without
(MPC-B, Figs. 3a and 4a) and with offset free method (MPC-OF,
Figs. 3b and 4b). Both controllers were able to follow the desired
setpoint changes. In the UPC-PAC the minimum movement for the
gate to change its position is restricted. This causes different
effects with the different methods: for the controller without
offset free method the water level settles some millimeters above
or under the setpoint, for example, in Fig. 3a the water level in
Pool 2 between 0 and 30 min was slightly over the setpoint
(shown with gray dashed line). The reason is that the controller
would make a slight movement to correct the gate position, but
the gate cannot make such small movement, hence it stays over
setpoint. In case of the offset free method (MPC-OF, Figs. 3b and
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Table 6
UPC-PAC, unknown changes.

Name MAE (%) IAE (%) StE (%)

Setpoint Disturbance Setpoint Disturbance Setpoint Disturbance

Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg.

MPCl 15.5 11.9 4.6 3.4 1.7 1.0 1.1 0.8 1.2 0.5 1.3 0.9
MPC-I 16.2 12.0 4.5 4.1 3.1 2.9 1.3 0.9 1.9 1.2 0.6 0.4
MPC-OF 16.6 12.8 3.8 2.6 1.4 0.9 0.4 0.3 0.2 0.1 0.1 0.1
MPC-FB 16.6 13.0 4.0 2.8 1.4 0.9 0.4 0.2 0.2 0.1 0.1 0.0
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Fig. 11. Disturbance test, MPC-B: (a) known and (b) unknown.
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Fig. 12. Disturbance test, MPC-OF: (a) known and (b) unknown.

Table 5
UPC-PAC, known changes.

Name MAE (%) IAE (%) StE (%)

Setpoint Disturbance Setpoint Disturbance Setpoint Disturbance

Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg.

MPC 11.7 7.7 1.6 0.9 0.5 0.4 0.1 0.1 0.8 0.6 0.1 0.1
MPC-I 18.0 14.9 5.2 4.7 7.6 5.6 1.7 1.4 5.2 3.4 1.5 0.9
MPC-OF 12.4 8.3 1.4 0.9 1.2 0.7 0.1 0.0 0.7 0.5 0.1 0.1
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4b) the water levels are slightly oscillating around setpoint. The
reason is similar, when the water level is for example above the
setpoint the controller calculates a small movement to close the
gate. However, this does not occur, due to the minimum gate
movement constraint. Then the controller calculates bigger and
bigger movements until the movement would be physically
realizable. However, this big movement would cause an offset in
the other direction and, following the mentioned example, the
water level would be under the setpoint and the whole process of
corrections would start again. This phenomenon causes the small
oscillations in the water level and in the gate movements. It can be
avoided with a simple constraint in the gate movement, but it
would also result in a small offset just like in the first case. The
different behaviour of the controllers can also be seen at 60 min,
when the setpoint in Pool 1 is changed back to the original. MPC-
OF makes a sharp increase in the water level of Pool 2, and then it
goes back fast to the setpoint, while MPC-B has smaller overshoot,
but it approaches slowly the setpoint and does not reach it before
90 min. Note that in both cases with (MPC-OF, Figs. 3b and 4b) and
without (MPC-B, Figs. 3a and 4a) the offset free method, the result
of the control action is observed before the desired setpoint
change, since the setpoint change is known beforehand and the
controller is able to act in advance.

Similar conclusions can be drawn from the comparison of the
known disturbance case (Test 2) without (MPC-B, Figs. 5a and 6a)
and with offset-free method (MPC-OF, Figs. 5b and 6b). Both
controllers were able to keep the water levels at setpoint while
known disturbances occurred.

However, in case of unknown changes, the performance of the
two controllers is different. The controller without offset free
method is not able to carry out the unknown setpoint change test
(MPC-B, Figs. 7a and 8a): for Pool 3, between 150 and 180 min the
setpoint changes from 55 cm to 60 cm and the controller is not
able to follow this change, the water level remaining at 55 cm.
Note that this problem occurs only in case of the setpoint change
for Pool 3. The reason is that in order to change the water level of
Pool 3 the discharge should be changed, since there is a weir at the
downstream end of Pool 3 that determines the discharge–water
level relationship. However, the predictive model in MPC should
know the outflow from the canal, which in this case changes at
every time step as the water level reaches the new setpoint. The
discharge change can also be seen from the gate movements
(Fig. 8a and b): in order to increase the level in Pool 3 between 150
and 180 min more discharge is needed in to the canal, therefore

Gate 1 should be more open, as it is in case of the MPC-OF (Fig. 8b).
The controller with offset free method (MPC-OF, Figs. 7b and 8b) is
able to tackle the problem: all the three setpoints are kept during
the test.

The controller without offset free method also failed during the
unknown disturbance test (MPC-B, Figs. 9a and 10a): when the
disturbance occurred in Pool 1 between 30 min and 60 min, the
water level was not kept at setpoint. Also when the disturbance
occurred in Pool 2 between 90 min and 120 min neither the water
level in Pool 1 nor in Pool 2 was kept at the setpoint. These
changes were difficult for the controller because they involved
unknown change in discharge. However, the offset-free method
solved the problem again (MPC-OF, Figs. 9b and 10b): all the three
setpoints were kept during all the experiment in the three pools.

6.2. Numerical results on the UPC-PAC

The MPC-B, MPC-FB, MPC-OF and MPC-I are implemented
numerically. In order to use MPC-O, the state space model should
be observable (Section 4.5). In the current state space formulation
the system was not observable, hence the MPC-O was not
implemented. This might be due to the structure of the model,
and it might be possible to overcome by restructuring the model
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Fig. 13. Disturbance test, MPC-I: (a) known and (b) unknown.
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Fig. 14. MPC-FB: (a) disturbance.
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or using a different model. In the case of the ASCE Test Canal 2, the
Integrator Delay model was used, so the resulting state space
model was observable. The prediction horizon was set to 15
samples (λ¼15) for the numerical tests. Similar to the experi-
mental tests, a sampling period of 10 s was used and the gates
were adjusted at every 10 s. The numerical test were carried out by
the SIC software (Malaterre, 2012).

The numerical results for the UPC-PAC including feedforward
method (the changes are known beforehand for the controller) are
shown in Table 5. While seeing the maximum and the integral
error, the normal method and the offset-free method produces
similar errors. However, in case of unknown changes (Table 6) the
integral of the error and the steady state error values are better for
the offset-free method. Also, in case of no feedforward component,
the MPC-FB method performs the best, however its performance is
not so good in case of known changes.

The results of the disturbance test are shown in Figs. 12–14.
Fig. 11 shows the results of the MPC without offset free method
(MPC-B). While it rejects very well the known disturbances, in the
presence of unknown disturbances the setpoint is not reached.
However, in case of MPC-OF (Fig. 12), the steady state error is zero
in both known and unknown cases. The results of MPC-OF are
similar to those of MPC-FB (Fig. 14) for the unknown distur-
bances. The feedforward effect of the MPC-OF can be observed in

Fig. 12a: the water level starts to increase before the actual
disturbance occurs (noted with a dotted horizontal line). Fig. 13
shows the result of MPC-I: the water levels are reaching the
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Fig. 15. ASCE Test Canal 2, Test 1: (a) MPC-B and (b) MPC-OF.
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Fig. 16. ASCE Test Canal 2, Test 1: (a) MPC-O and (b) MPC-I.
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Fig. 17. ASCE Test canal 2, Test 1, MPC-FB.
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setpoint slowly after some initial oscillations. MPC-OF overper-
forms MPC-I, especially in Pool 3. However, for known distur-
bances MPC-OF shows an improvement.

Summarizing, the offset-free method (MPC-OF) balances
between the handling of known and unknown disturbances, and
shows good performance in both cases. While the MPC-B handles
slightly better the known disturbances, and the MPC-FB handles
equally the unknown disturbances, MPC-OF is able to handle both.

Disturbances can be known or unknown both in magnitude
and in time. The work by Weyer (2008) discussed on the benefit of
incorporating knowledge on future offtakes in LQ controllers and
concluded that there is little benefit unless it is guaranteed that
the offtake takes place at the scheduled time. This is an important
practical issue. If a disturbance occurs at a different time that it
was scheduled or predicted, then it has similar effects as an
unknown disturbance occurring at a certain time. For example,
recalling some results presented in Section 6.2, if there is a
scheduled offtake of 20 l/s and it does not occur at the expected
time, the controller will have the wrong information that the
discharge has been reduced in �20 l/s. This can cause similar
effects as if the offtake magnitude is not known. In any case, the
controller derived in this study has the capability of reacting to the
unexpected timing of the off take as if it was unknown.

6.3. Numerical results on the ASCE benchmark Canal 2

All five methods (MPC, MPC-FB, MPC-OF, MPC-O and MPC-I)
have been numerically implemented on the ASCE Test Canal 2. The
tuned Test 1 results are presented.

Figs. 15–17 show the results of the numerical tests. Fig. 15a
shows the result of the MPC. All the water levels reach the setpoint
in the first 12 h of the test, when the offtakes are known. However,
during the second half of the test, some water levels are not at
setpoint, there is a difference of 20 cm. Using MPC-I (Fig. 16b), all
the water levels are going to setpoint, however, they are going
slowly, and the performance is clearly lower than from the case of
MPC in the first half of the test. MPC-O has big oscillations in the
first half of the test (Fig. 16b). MPC-OF arrives to no steady state
error in the first half of the test, while in the second half it goes
closed to the setpoint after a big overshoot (Fig. 15b). The same
overshoot is seen in case of MPC-FB (Fig. 17), but for this controller
there are constant oscillations during the first half of the test.

If the three controllers MPC (Fig. 15a), MPC-FB (Fig. 17) and
MPC-OF are compared (Fig. 15b), it can be seen that MPC-OF
balances between the performance of the two others: in the first
half of the test it has slightly worse performance than MPC, but
much better than MPC-FB, while in the second half of the test it
goes much closer to the setpoint than MPC, but slightly less close
than MPC-FB.

Table 7 shows the performance indicators calculated for the
tuned Test 1 for the ASCE. The average of the MAE has the same

order of magnitude for all the methods (except the MPC-I). In the
case of the steady-state error for the first interval (that includes
the known disturbances), the MPC method performs the best. The
MPC-OF has slightly worst performance, while the other methods
perform worse. In the second half of the test, MPC-O and MPC-FB
method are the best, followed by the MPC-OF. It can be seen that
the offset-free method is making a balance between providing
good performance for both known and unknown changes.

6.4. Influence of the tuning on the results

It has been shown in the above sections that for these specific
cases MPC-OF achieves better results than MPC-B or MPC-FB.
However, as the performance of MPC depends on the tuning as
well, to what extend this result might be caused by different
tuning. First, it is clear that MPC-B cannot has steady state offset,
and this cannot be eliminated with different tuning. This happens
especially in cases when a gravity offtake is involved, and hence
the controller has no clear knowledge of the outflow. For MPC-FB,
the method has no knowledge of the future disturbances. This
cannot be changed by tuning. In case of smaller disturbances, the
difference between MPC-FB and MPC-OF might not be significant,
as the knowledge about the disturbance will not improve the
control. However, in case of larger known disturbances MPC-OF is
expected to give better results.

As to the comparison with the other methods MPC-I and MPC-
O, the results can clearly depend on the tuning. MPC-OF is not
better than any of these other methods, here it was only shown
that the results are comparable.

7. Conclusions

The main purpose of this study was to find a method to
eliminate the offset of a predictive controller for water level in
open channels. The method is based on a balanced combination of
two strategies, one primarily suitable for control in the presence of
unknown disturbances and another one including an integral
effect able to cancel unknown disturbances.

It has been implemented to control water levels in a three-pool
experimental canal and further numerically tested using a test
case benchmark of a real long canal with eight controlled pools.
Some experimental results indicate that this combined method in
these cases can lead to better performance. In the test cases the
method was able to achieve the desired water level set points in
the case when the disturbances are known in advance as well in
the case where no information is known about the disturbances,
eliminating steady-state offsets. Further studies may be needed to
confirm the validity of the proposed method for other cases.

Table 7
ASCE Canal 2, Test 1, Tuned.

Name MAE (%) IAE (%) StE (%)

0–12 h 12–24 h 0–12 h 12–24 h 0–12 h 12-24 h

Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg. Max. Avg.

MPC 4.7 2.1 14.7 4.8 0.8 0.5 10.5 2.7 0.3 0.2 12.5 2.8
MPC-OF 4.1 1.7 19.4 5.0 1.2 0.5 6.8 2.2 0.7 0.3 4.2 2.3
MPC-O 4.6 2.7 12.5 4.9 2.0 1.2 4.2 1.8 2.9 1.7 2.2 1.0
MPC-I 11.2 7.5 12.2 8.2 7.6 4.8 8.9 5.6 8.4 5.6 11.5 7.6
MPC-FB 4.7 2.7 17.9 4.5 2.0 1.1 5.4 1.7 2.8 1.0 2.2 1.2
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