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a b s t r a c t

This paper describes a new simplified model for controller design of open water channels that are
relatively short, flat and deep: the integrator resonance model (IR model). The model contains an
integrator and the first resonance mode of a long reflecting wave. The paper compares the integrator
resonance model to the simplified models: integrator delay, integrator delay zero and filtered integrator
delay and to the high-order linearized Saint-Venant equations model. Results of using the integrator
resonance model in a model predictive controller applied in closed loop on a high-order non-linear
Saint-Venant model of the first pool of the laboratory canal at Technical University of Catalonia,
Barcelona are compared to the results of using the other simplified models in MPC. This comparison
shows that the IR model has less model mismatch with the high order model regarding the relevant
dynamics of these typical channels compared to the other simplified models. It is demonstrated that not
considering the resonance behavior in the controller design may result in poor performance of the
closed loop behavior. In order to demonstrate the validity of the simulation model used in this study, the
controller using the IR model is also tested on the actual open water channel and compared to the results
of the high-order non-linear Saint-Venant simulation model. The results of this comparison show a close
resemblance between simulation model and real world system.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In order to increase water delivery efficiency, throughout the
world, control of open water channels such as irrigation canals is
implemented, often referred to as canal automation. A common
control configuration is distant downstream control where the
water level h2 downstream in the open water channel needs to be
kept as close as possible to a setpoint by adjusting the flow Q1 of
the hydraulic structure upstream in the channel (see Fig. 1). For
open water channels that are short, flat and deep this can be
complicated due to the occurrence of resonances (Schuurmans,
1997). These resonances are badly damped long waves that reflect
on the ends of the open water channel. Channels that are short,
flat and deep have a small integrated friction force over the length
of the pool, which means it is easy for waves to travel up and
down the pool a number of times before settling. The character-
ization in short versus long, flat versus steep and deep versus
shallow is hard to define in standard rules, due to the complexity
of the dynamic behavior of open water channels. van Overloop

(2006) attempts to capture the sensitivity for resonance waves as a
function of length, width, friction coefficient, flow and average
depth of an open water channel. Litrico and Fromion (2009) prove
that resonance waves are also present in long, steep and shallow
open water channels, but that they do not show up in measure-
ments as they are damped significantly.

The first resonance mode, as depicted in Fig. 1, is troublesome
for distant downstream control as its peak is in 1801 phase lag
with the control input. The gain margin criterion for designing
feedback controllers dictates the controlled system gain at that
frequency to be smaller than 0.5, in order to be robust against
instability. Another explanation why it is hard to deal with this
first resonance mode is that it does not make sense to decrease the
flow Q1, when the water level h2 is higher than the setpoint,
because in fact the flow at the upstream side of the pool is already
lower due to the oscillation and needs not be lowered more.

In order to avoid unstable closed loop control, there are three
ways to deal with the resonance in the controller design. First, the
resonance can be accepted and, consequently, obeying the gain
margin criterion will result in a low performing closed loop
behavior. Second, the resonance can be filtered before it enters
the controller, allowing for a higher performance. In this case, the
resonance is present, but the controller does not react to it in order
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to avoid instability. Third and the last, the resonance can be
included in the controller model, which means the controller
avoids triggering the resonance mode as much as possible. In this
paper, these different ways of controller design are analyzed and
evaluated on an actual open water channel that is very sensitive to
resonance waves. The innovative aspect of this research is that it
proposes a new simplified model that models the first resonance
mode as part of the controller model: the integrator resonance
model (IR model).

2. Simplified models of open water channels

In order to develop controllers for open water channels,
simplified models need to be developed. Many standard controller
design algorithms for feedback and feedforward control require
low order linear models (Vandevegte, 1990). Low order and linear
models are also important for real-time optimizing controllers,
such as model predictive control, in order to achieve tractability
and convexity (Camacho & Bordons, 2004).

Over the past two decades, in the field of control of open water
channels, various types of simplified models have been developed.
Schuurmans (1997) proposes the integrator delay (ID) model,
which consists of a delay part describing the upstream uniform
flow part and an integrator describing the downstream storage
volume of which the water level needs to be kept at setpoint. This
model describes the low frequency behavior accurately, but does
not contain resonance modes. For long, steep and shallow open
water channels, this model performs excellent. By simplifying the
linearized Saint-Venant equations, Litrico and Fromion (2004)
arrive at the conclusion of adding a zero to the ID model in order
to model the high frequency behavior. This integrator delay zero
(IDZ) model captures the average behavior of the resonances, but
unfortunately not the peaks of which the first one is so important
for stable controller design of distant downstream control. Weyer
(2001) attempts to capture the first resonance by proposing a
third-order model with delay and fitting this model to measured
data using system identification algorithms. In van Overloop et al.
(2010) it is demonstrated that this procedure may result in the
underestimation of the first resonance peak due to the influence of
the second and even higher resonance modes that are present in
the measurements and may not be completely filtered out. The
system identification algorithm tries to fit the resonator to be
optimal for both the first peak and the higher harmonics that are
remaining in the signals, reducing the value of the identified peak
of the important first resonance mode. A simplified model for
open water channels that focuses on the always present integrator
and only the first resonance mode has not been assessed in the
literature before.

3. Open water channel dynamics of resonance-sensitive open
water channels

The Saint-Venant equations, calibrated on the friction para-
meter, describe the dynamic behavior of water flow in an open
water channel accurately (Chow, 1959). A discretized and linear-
ized Saint-Venant model of a short, flat and deep pool presented in
the frequency domain demonstrates clearly the integrator at low
frequencies and the resonance peaks at higher frequencies (see
solid line in Fig. 2). In van Overloop et al. (2010) the Laplace
transfer function from an inflow Q1 to the downstream water h2 is
derived. This transfer function is a third-order model without time
delay consisting of an integrator with a gain of the reciprocal of
the storage area As and a damped oscillator characterized by the
natural frequency ω0 and magnitude peak M of the first resonance
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The parameters’ storage area As, the natural frequency ω0 and
magnitude peak M of the first resonance of this model structure
can be estimated using different procedures, e.g. from a step
response, system identification using a chirp signal or a random
binary signal around an initial estimate of the natural frequency.
An important notice is that this model is a linearization of the non-
linear Saint-Venant equations, so the parameters are different in
different working points (see for example Table 1). The most
important variables that determine the working points are the

Fig. 1. Resonance-sensitive open water channel including distant downstream
control loop.
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Fig. 2. Bode diagram of high-order linearized Saint-Venant model (solid line),
integrator delay model (dashed line), integrator delay zero model (dash dotted line)
and integrator resonance model (dotted line) modeling the laboratory open water
channel.

Table 1
Properties of the first resonance of the first pool of laboratory canal UPC-PAC.

Flow (l/s) Frequency ω0 (rad/s) Magnitude M

10 0.1011 35.09
30 0.1011 11.77
50 0.1010 7.11
70 0.1008 5.14
90 0.1006 4.05
110 0.1003 3.37
130 0.0999 2.91
150 0.0997 2.59
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water level at the downstream side of the open water channel and
the flow through the open water channel. As the goal of a
controller is to keep the downstream water level at setpoint and
well-designed controllers are capable of doing so, the main
variable that defines the working point is the flow.

In order to see the difference in dynamic behavior, various
models of a resonance-sensitive open water channel are compared
in the frequency domain. As example, the first pool of the
laboratory canal assessed in this paper is taken at a flow Q1 of
10 l/s and a depth D of 0.80 m. The channel is fully under back-
water, which means waves can reflect easily forth and back. As a
reference, the discretized linearized Saint-Venant model is taken
and compared to the integrator delay model, integrator delay zero
model and the integrator resonance model. The integrator delay
model uses the total surface area of the open water channel as a
storage area and the delay time τd derived from the celerity
τd ¼ L=

ffiffiffiffiffiffiffiffiffiffi
gUD

p
with L is the length of the pool and g is the

gravitational acceleration. The integrator delay zero model is an
analytical solution (Litrico & Fromion, 2004) using the same
dimensions of the channel as used in the Saint-Venant model.
The integrator resonance model uses again the total surface area
as the storage area and uses the frequency and the magnitude of
the first resonance peak of the Saint-Venant model to fit the IR
model. This frequency is ω0¼0.101 rad/s and the magnitude of the
first resonance peak is M(ω0)¼35.09 for this flow condition (see
also Table 1). In Fig. 2, the Saint-Venant model together with the
ID, IDZ and IR model are shown.

Fig. 2 shows that the Saint-Venant model (solid line) has a
�901 phase shift originating from the integrator between flow as
an input and water level as an output variable and an extra �1801
step per extra resonance mode. The integrator delay (dashed line)
and integrator delay zero (dash dotted line) models try to mimic
the resonance phase shift by adding an extra time delay. No
resonance peaks can be seen in the gain graph for these two
models. The integrator resonance model (dotted line) is accurate
in the low frequencies passed the first resonance. This is the part
of the spectrum that is important given the stability issues that
may arise for resonance-sensitive pools. Hence, the IR model
captures the low-frequency behavior and the first resonance peak,
while ID and IDZ do not model this important peak.

4. The laboratory canal

The laboratory canal UPC-PAC (Technical University of Catalo-
nia – Control Algorithms Test Canal) is located in Barcelona, at the
Northern Campus of the University. The facility occupies an area of
22.5 m�5.4 m, being 220 m long and having serpentine shape
with a rectangular cross section. It is 1 m deep, 0.44 m wide, and
has a zero bottom slope. It contains three motorized vertical sluice
gates, nine water levels sensors, and four rectangular weirs. With
the help of these structures it is possible to use different config-
urations from one pool to three pools. The maximum discharge is
150 l/s. In this paper, the first pool of this canal is modeled and
controlled; its length is 87 m. At the upstream end there is an
undershot gate that separates the pool from a constant level
reservoir and at the downstream end there is an undershot gate
as well. Sepúlveda Toepfer (2008) gives a concise description of
the laboratory canal.

In order to see the dependency of the first resonance mode
given the different flows that may occur in the canal pool, the
frequency and magnitude of this resonance are estimated and
presented in Table 1 using the high-order linearized Saint-Venant
model of the pool.

The frequency of the resonance wave is only changing slightly,
while the peak magnitude is decreasing with increasing flow and

is very high at the lowest flow of 10 l/s. As the resonance is most
prominent at this low flow, the tests are executed in this
working point.

5. Controller design

Model predictive control is a control methodology that has
proven to be very suitable for the control of open water channels
and is also applied in this research. Figueiredo, Botto, and Rijo
(2013), Li and De Schutter (2011), and Pascual et al. (2013) are all
examples of the application of model predictive control on water
systems that, unlike the open water channel assessed in this
research, are not dominated by strong resonance effects.

For the first pool of the laboratory canal, four model predictive
controllers are designed according to van Overloop (2006) based
on four different internal models. This controller is a finite horizon,
linear time-invariant MPC configured as a quadratic programming
problem. The goal of the research is to demonstrate that a
mismatch between internal model and actual system at important
frequencies can lead to poor performance or even instability in
closed loop control. Constraints are left out of the optimization
problem, as they do not add much relevance to the tests. The
downstream flow Q2 is the disturbance flow, while the upstream
flow Q1 is controlled by MPC. The models used are as follows:

� Integrator delay (MPC-ID) based on Schuurmans (1997):

h2 ¼
e� τds

As Us
UQ1�

1
As Us

UQ2 ð2Þ

where As¼38.28 m2 and τd¼31.00 s.
� Integrator delay zero (MPC-IDZ) based on Litrico and Fromion

(2004):

h2 ¼
1þz1s
Ass

e� τdsQ1�
1þz2s
Ass

Q2; ð3Þ

where As¼38.28 m2, τd¼30.74 s, z1¼43.41 and z2¼31.06.
� Integrator delay in series with a low-pass Filter (MPC-IDF)

based on Schuurmans (1997):

h2 ¼
eð� τd � τf Þs

As Us
UQ1�

e� τf s

As Us
UQ2 ð4Þ

where As¼38.28 m2, τd¼31.00 s and τf¼70.00 s is added as an
extra delay time in order to compensate for the extra delay
time caused by the filter F ¼ 1=Tf Usþ1where Tf is 120.4 s.

� Integrator resonance (MPC-IR):

h2 ¼
ω0

2

Ass3þ s2
MþAs Uω0

2 Us
UQ1�

2Us2þ 2
As UM

Usþω0
2

Ass3þ s2
MþAs Uω0

2 Us
UQ2 ð5Þ

where As¼38.28 m2, ω0¼0.101 rad/s and M¼35.09.

The models are setup in state-space form which enables a
straightforward implementation of the models in the MPC over
the prediction horizon.

The control objective is to keep the downstream water level h2
constant, while disturbance flow steps occur on Q 2. In all cases, a
10 s sampling time was used and a prediction horizon of 20 steps
(3.3 min). The objective function over the prediction horizon

J ¼ ∑
20

i ¼ 1
fWe Ueðkþ iÞ2þWesum Uesumðkþ iÞ2þWΔQ UΔQ1ðk�1þ iÞ2g

ð6Þ

eðkÞ ¼ h2ðkÞ�h2;ref ð7Þ

esumðkÞ ¼ esumðk�1ÞþeðkÞ ð8Þ
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is minimized on the change of inflow ΔQ1. The penalty We on the
water level deviation e from the setpoint h2,ref¼0.80 m is 100, the
penalty Wesum on the sum of the water level deviation esum is 0.04,
while the penalty WΔQ on the upstream flow change ΔQ1 was
chosen different for each model in order to get the highest
performance. The values for the penalties on the water level
deviations and the sum of the water level deviations were selected
based on trial and error. The penalties on the flow change were
selected for each model according to the following trial-and-error
procedure:

1. Select one of the four simplified models.
2. Start with a very high penalty on the flow change WΔQ of

250,000. Run the closed loop simulation of the high-order
Saint-Venant model with MPC using the selected simplified
model (the results for all models showed a very slow response
with this high penalty).

3. Decrease the penalty stepwise in order to increase the
performance.

4. Rerun the close loop simulation with the new penalty.
5. Repeat steps 3 and 4 until visually high frequent oscillations in

the control flow can be distinguished. Use as final values for the
model selected the penalties of the previous run in which these
undesired oscillations did not show up yet.

The final value for WΔQ is 111,111 for ID, 250,000 for IDZ, 3460
for IDF and 10,000 for IR. For the IDF model it is possible to arrive
at the smallest penalty due to the fact that the oscillations are
filtered. The second smallest penalty is achieved by the IR model
since it includes the first oscillation mode and the controller is
internally able to counteract on this.

6. Simulation results

The simulation results presented are the unsteady solution of
the full non-linear Saint-Venant equation using the SIC (simulation
of irrigation canals) software package (Malaterre & Baume, 1998).
The following experiment is carried out with all the models: at
30 min the discharge changes from 10 l/s to 20 l/s as a known
disturbance. At 120 min, the discharge changes to the original
value of 10 l/s, but now this is unknown by the controller.

6.1. ID model

The water level deviations caused by the known disturbance
step are clearly smaller than the ones of the unknown disturbance.
Oscillations in the water levels due to the resonances are visible
but these are not harmful. The control flow does not react on these
oscillations (that are not part of the ID model) only because the
control has a high penalty on the flow changes. A lower penalty on
the flow change directly leads to undesired oscillations in the
control flow that will cause wear and tear in the long run (Fig. 3).

6.2. IDF model

Again, the water level deviations caused by the known dis-
turbance step are smaller than the ones of the unknown distur-
bance. Oscillations in the water levels are first filtered out before
the water level signal enters the controller. In this way, the
controller does not react on the oscillations and a much lower
penalty on the flow change can be used. Despite this much lower
penalty, the performance is not higher compared to using the ID
model without the filter (Fig. 4).

6.3. IDZ model

Also here, the water level deviations caused by the known
disturbance step are smaller than the ones of the unknown
disturbance. The performance is comparable to the performance
when using the ID model, although the control flow shows a bit
more overshoot and has less damping (Fig. 5).

6.4. IR model

The water level deviations when using the IR model of the
known and unknown disturbance steps are much smaller than
when using the other models. This is due to the small penalty on
the flow change that can be used for this model. This small penalty
can only be used because the internal model fits the real system
well. Using the same small penalty for the ID and IDZ model
resulted in an unstable closed loop system.

For all models used, the high frequent oscillations in the water
levels are caused by the resonances in the system itself and not by
the controllers. These oscillations are unavoidable and harmless,
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Fig. 3. Simulated distant downstream water level response (h2) and control flow (Q1) reacting on known and unknown disturbance of the model predictive controller using
the integrator delay model.
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while if these oscillations would show up in the control flow, they
would be unacceptable for reasons of wear and tear. As expected,
all results show a small water level error when the disturbance is
known by the controller and a larger deviation for the unknown
case, where the controller needs to depend on its feedback
functionality (Fig. 6).

7. Results on actual open water channel

As the IR model is the focus of this research, this model is also
tested on the actual laboratory canal in order to check if it also
behaves properly in a real world application. The same experiment
as described for the IR model above is conducted with the
difference that the changes happen at 10 min and 40 min.

Figs. 7 and 8 indicate that the model predictive controller based
on the integrator resonance model clearly resembles the model
results. The differences are due to the constraints in the hardware
being the minimum gate movement, and the water level and gate

position measurement errors. These hardware constraints cause
the water levels to fluctuate around the setpoint.

8. Discussion

As can be seen from the results, it is possible to design stable
controllers using all four models. All the controllers were able to
react to known and unknown disturbances. Comparing all the
results, the IR model in MPC is able to get the water level back to
setpoint in the shortest time (15 min for known and 1 h for
unknown disturbances) without large fluctuations in the dis-
charge. For the other models these actions take at least 20 min
and 100 min, in some cases with a number of low frequent
oscillations in the discharge (IDF, IDZ). The poor performance of
IDF is most probably due to the inaccurate description of the filter
modeled as a pure delay.

Since the IR model contains the first oscillation mode, it is
possible to achieve a higher performance. For the ID or IDZ
models, using the same penalties as the ones applied in the IR

0 20 40 60 80 100 120 140 160 180 200
0.005

0.01

0.015

0.02

0.025

Time (min)

D
is

ch
ar

ge
 (m

3 /s
) 

Discharge, MPC-IDF

Q1

Q2

0 20 40 60 80 100 120 140 160 180 200
0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86
Water level, MPC-IDF

Time (min)

W
at

er
 le

ve
l (

m
)

Fig. 4. Simulated distant downstream water level response (h2) and control flow (Q1) reacting on known and unknown disturbance of the model predictive controller using
the integrator delay model with filter.
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the integrator delay zero model.

P.-J. van Overloop et al. / Control Engineering Practice 27 (2014) 54–6058



0 20 40 60 80 100 120 140 160 180 200
0.005

0.01

0.015

0.02

0.025

Time (min)

D
is

ch
ar

ge
 (m

3 /s
) 

Discharge, MPC-IR

Q1

Q2

0 20 40 60 80 100 120 140 160 180 200
0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86
Water level, MPC-IR

Time (min)

W
at

er
 le

ve
l (

m
)

Fig. 6. Simulated distant downstream water level response (h2) and control flow (Q1) reacting on known and unknown disturbance of the model predictive controller using
the integrator resonance model.
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Fig. 7. Distant downstream water level response (h2) of known and unknown disturbance of the model predictive controller using the integrator resonance model
in a laboratory experiment (left) compared to simulation results (right).
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model, resulted in severe oscillations in the control flow indicating
an unstable close loop system.

A final check on the general applicability of the IR model is a
sensitivity analysis of the robustness. A test is set up in which the
IR model is designed using the magnitude and frequency of the
resonance peak belonging to the flows of 10, 50, 90 and 130 l/s.
These models are tested on the numerical model running at
different flows (again at 10, 50, 90 and 130 l/s). So for each flow
test there is one IR model that corresponds to that flow and three
that have a flow mismatch. Table 2 gives the results of the
objective function value Jclosedloop over the entire simulation period
m for the ‘known step’ test (see Fig. 6, first 60 min) according to
Eq. (9). The same objective function is used as in the previous tests
(see Eq. (6)). Also the same penalties (We¼100, Wesum¼0.04,
WΔQ¼10,000) are used

Jclosedloop ¼ ∑
m

k ¼ 1
fWe UeðkÞ2þWesum UesumðkÞ2þWΔQ UΔQ1ðk�1Þ2g

ð9Þ
The result of this sensitivity test shows that the IR model is robust
against flow changes. In general, the case where the flow for which
the IR model is designed coincides with the flow on which it is
tested shows the lowest objective function value, indicating the
highest performance.

9. Conclusions

Model predictive control based on the integrator resonance
model is tested on an accurate model of an open water channel

and on the actual openwater channel. Using the integrator resonance
model is preferable for describing the relevant dynamics for con-
troller design of open water channels that are short, flat and deep.
This can be seen by comparing the IR model to the other simplified
models known in the literature (integrator delay, integrator delay
zero and integrator delay with filter) in a closed loop test using
model predictive control on such an open water channel. The test
with the MPC-IR controller executed on the actual laboratory canal
pool compared to the same controller applied to the non-linear high-
order Saint-Venant simulation model shows very similar results. This
indicates that the modeling software is accurate enough for design-
ing and testing controllers’ offline.
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